Cardiovascular disease (CVD) continues to be a leading cause of death. Accordingly, risk models attempt to predict an individual's probability of developing the disease. Risk models are incorporated into calculators to determine the risk for a number of clinical conditions, including the ten-year risk of developing CVD. There is significant variability in the published models in terms of how the clinical measurements are converted to risk factors as well as the specific population used to determine b-weights of these risk factors. Adding to model variability is the fact that numbers are an imperfect representation of a person's health status. Acknowledgment of uncertainty must be addressed for reliable clinical decision-making. This paper analyzes 35 published risk calculators and then generalizes them into one “Super Risk formula” to form a common basis for uncertainty calculations to determine the best risk model to use for an individual. Special error arithmetic, the duals method, is used to faithfully propagate error from model parameters, population averages and patient-specific clinical measures to one risk number and its relative uncertainty. A set of sample patients show that the “best model” is specific to the individual and no one model is appropriate for every patient.

References

References
1.
Mozaffarian
,
D.
,
Benjamin
,
E. J.
,
Go
,
A. S.
,
Arnett
,
D. K.
,
Blaha
,
M. J.
,
Cushman
,
M.
,
de Ferranti
,
S.
,
Després
,
J.-P.
,
Fullerton
,
H. J.
,
Howard
,
V. J.
,
Huffman
,
M. D.
,
Judd
,
S. E.
,
Kissela
,
B. M.
,
Lackland
,
D. T.
,
Lichtman
,
J. H.
,
Lisabeth
,
L. D.
,
Liu
,
S.
,
Mackey
,
R. H.
,
Matchar
,
D. B.
,
McGuire
,
D. K.
,
Mohler
,
E. R.
,
Moy
,
C. S.
,
Muntner
,
P.
,
Mussolino
,
M. E.
,
Nasir
,
K.
,
Neumar
,
R. W.
,
Nichol
,
G.
,
Palaniappan
,
L.
,
Pandey
,
D. K.
,
Reeves
,
M. J.
,
Rodriguez
,
C. J.
,
Sorlie
,
P. D.
,
Stein
,
J.
,
Towfighi
,
A.
,
Turan
,
T. N.
,
Virani
,
S. S.
,
Willey
,
J. Z.
,
Woo
,
D.
,
Yeh
,
R. W.
, and
Turner
,
M. B.
,
2015
, “
AHA Statistical Update, Heart Disease and Stroke Statistics—2015 Update, a Report From the American Heart Association
,”
Circulation
,
131
(
4
), pp.
434
441
.
2.
Dawber
,
T.
,
Meadors
,
G.
, and
Moore
,
F.
,
1951
, “
Epidemiological Approaches to Heart Disease: The Framingham Study
,”
Am. J. Public Health
,
41
(
3
), pp.
279
286
.
3.
Mahmooda
,
S.
,
Levy
,
D.
,
Vasan
,
R.
, and
Wang
,
T.
,
2014
, “
The Framingham Heart Study and the Epidemiology of Cardiovascular Diseases: A Historical Perspective
,”
Lancet
,
383
(
9921
), pp.
999
1008
.
4.
Damen
,
J.
,
Hooft
,
L.
,
Schuit
,
E.
,
Debray
,
T.
,
Collins
,
G.
,
Tzoulaki
,
I.
,
Lassale
,
C.
,
Siontis
,
G.
,
Chiocchia
,
V.
,
Roberts
,
C.
,
Schulussel
,
M.
,
Gerry
,
S.
,
Black
,
J.
,
Heus
,
P.
,
van der Schouw
,
Y.
,
Peelen
,
L.
, and
Moons
,
K.
,
2016
, “
Prediction Models for Cardiovascular Disease Risk in the General Population: Systematic Review
,”
BMJ
,
353
, pp. 1–11.
5.
Goff
,
D.
,
Lloyd-Jones
,
D.
,
Bennett
,
G.
,
Coady
,
S.
,
D'Agostino
,
R.
,
Gibbons
,
R.
,
Greenland
,
P.
,
Lackland
,
D.
,
Levy
,
D.
,
O'Donnell
,
C.
,
Robinson
,
J.
,
Schwartz
,
J.
,
Shero
,
S.
,
Smith
,
S.
,
Sorlie
,
P.
,
Stone
,
N.
, and
Wilson
,
P.
,
2014
, “
2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
,”
Circulation
,
129
, pp. S49–S73.
6.
Hippisley-Cox
,
J.
,
Coupland
,
C.
,
Vinogradova
,
Y.
,
Robson
,
J.
,
Minhas
,
R.
,
Sheikh
,
A.
, and
Brindle, P.
,
2008
, “
Predicting Cardiovascular Risk in England and Wales: prospective Derivation and Validation of QRISK2
,”
BMJ
,
336
(
7659
), pp. 1475–1482.
7.
D'Agostino
,
R.
,
Vasan
,
R.
,
Pencina
,
M.
,
Wolf
,
P.
,
Cobain
,
M.
,
Massaro
,
J.
, and
Kannel
,
W.
,
2008
, “
General Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart Study
,”
Circulation
,
117
(6), pp.
743
753
.
8.
Ridker
,
P.
,
Buring
,
J.
,
Rifai
,
N.
, and
Cook
,
N.
,
2007
, “
Development and Validation of Improved Algorithms for the Assessment of Global Cardiovascular Risk in Women: The Reynolds Risk Score
,”
JAMA
,
297
(
6
), pp.
611
619
.
9.
Lee
,
E.
,
Howard
,
B.
,
Wang
,
W.
,
Welty
,
T.
,
Galloway
,
J.
,
Best
,
L.
,
Fabsitz
,
R.
,
Zhang
,
Y.
,
Yeh
,
J.
, and
Devereux
,
R.
,
2006
, “
Prediction of Coronary Heart Disease in a Population With High Prevalence of Diabetes and Albuminuria: The Strong Heart Study
,”
Circulation
,
113
(25), pp. 2897–2890.
10.
Folsom
,
A.
,
Chambless
,
L.
,
Duncan
,
B.
,
Gilbert
,
A.
, and
Pankow
,
J.
,
2003
, “
Prediction of Coronary Heart Disease in Middle-Aged Adults With Diabetes
,”
Diabetes Care
,
26
(
10
), pp.
2777
2784
.
11.
Wilson
,
P.
,
D'Agostino
,
R.
,
Levy
,
D.
,
Belanger
,
A.
,
Silbershatz
,
H.
, and
Kannel
,
W.
,
1998
, “
Prediction of Coronary Heart Disease Using Risk Factor Categories
,”
Circulation
,
97
(
18
), pp.
1837
1847
.
12.
Assmann
,
G.
,
Cullen
,
P.
, and
Schulte
,
H.
,
2002
, “
Simple Scoring Scheme for Calculating the Risk of Acute Coronary Events Based on the 10-Year Follow-Up of the Prospective Cardiovascular Münster (PROCAM) Study
,”
Circulation
,
105
(
3
), pp.
310
315
.
13.
Ridker
,
P.
,
Paynter
,
N.
,
Rifai
,
N.
,
Gaziano
,
J.
, and
Cook
,
N.
,
2008
, “
C-Reactive Protein and Parental History Improve Global Cardiovascular Risk Prediction: The Reynolds Risk Score for Men
,”
Circulation
,
118
(
22
), pp.
2243
2251
.
14.
Stevens
,
R.
,
Kothari
,
V.
,
Adler
,
A.
,
Stratton
,
I.
, and
Holman
,
R.
,
2001
, “
The UKPDS Risk Engine: A Model for the Risk of Coronary Heart Disease in Type II Diabetes (UKPDS 56)
,”
Clin. Sci.
,
101
(
6
), pp.
671
679
.
15.
Cullen
,
P.
,
Schulte
,
H.
, and
Assmann
,
G.
,
1997
, “
The Münster Heart Study (PROCAM) Total Mortality in Middle-Aged Men is Increased at Low Total and LDL Cholesterol Concentrations in Smokers but Not in Nonsmokers
,”
Circulation
,
96
(
7
), pp.
2128
2136
.
16.
Hippisley-Cox, S. D., 2013, “
QRISK®2-2014 Online C-Codes
,” ClinRisk Ltd., Leeds, UK, accessed Feb. 5, 2018, http://svn.clinrisk.co.uk/opensource/qrisk2/c/
17.
Anderson
,
K.
,
Wilson
,
P.
,
Odell
,
P.
, and
Kannel
,
W.
,
1991
, “
An Updated Coronary Risk Profile. A Statement for Health Professionals
,”
Circulation.
,
83
(
1
), pp.
356
362
.
18.
Makuch
,
R.
,
Freeman
,
D.
, and
Johnson
,
M.
,
1979
, “
Justification for the Lognormal Distribution as a Model for Blood Pressure
,”
J. Chronic Dis.
,
32
(
3
), pp.
245
250
.
19.
Larson
,
M.
,
2006
, “
Statistical Primer for Cardiovascular Research—Descriptive Statistics and Graphical Displays
,”
Circulation.
,
114
(
1
), pp.
76
81
.
20.
Pater
,
C.
,
2005
, “
The Blood Pressure ‘Uncertainty Range’—A Pragmatic Approach to Overcome Current Diagnostic Uncertainties (II)
,”
Curr. Controlled Trials Cardiovasc. Med.
,
6
(
1
), p.
5
.
21.
Kannel
,
W.
,
Mcgee
,
D.
, and
Gordon
,
T.
,
1976
, “
A General Cardiovascular Risk Profile: The Framingham Study
,”
Am. J. Cardiol.
,
38
(
1
), pp.
46
51
.
22.
Chobanian
,
A. V.
,
Bakris
,
G. L.
,
Black
,
H. R.
,
Cushman
,
W. C.
,
Green
,
L. A.
,
Izzo
,
J. L.
,
Jones
,
D. W.
,
Materson
,
B. J.
,
Oparil
,
S.
,
Wright
,
J. T.
,
Roccella
,
E. J.
, and the National High Blood Pressure Education Program Coordinating Committee, 2003, “
JNC7, the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure
,”
Hypertension
,
42
(
6
), pp.
1206
1252
.
23.
Handler
,
J.
,
2009
, “
The Importance of Accurate Blood Pressure Measurement
,”
Perm. J./Summer
,
13
(
3
), pp.
51
54
.
24.
Hippisley-Cox
,
J.
, and
Coupland
,
C.
,
2015
, “
Development and Validation of Risk Prediction Equations to Estimate Future Risk of Heart Failure in Patients With Diabetes: A Prospective Cohort Study
,”
BMJ Open
,
5
(
9
), p.
e008503
.
25.
Canton Potsdam LAB Summary Discharge Report, 2013, private communication.
26.
Pickering
,
T.
,
Hall
,
J.
,
Appel
,
L.
,
Falkner
,
B.
,
Graves
,
J.
,
Hill
,
M.
,
Jones
,
D.
,
Kurtz
,
T.
,
Sheps
,
S.
, and
Roccella
,
E.
,
2005
, “
Recommendations for Blood Pressure Measurement in Humans and Experimental Animals—Part 1: Blood Pressure Measurement in Humans: A Statement for Professionals From the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research
,”
Hypertension
,
45
(1), pp.
142
161
.
27.
Frost
,
C.
, and
Thompson
,
S.
,
2000
, “
Correcting for Regression Dilution Bias: Comparison of Methods for a Single Predictor Variable
,”
J. R. Stat. Soc. Ser. A (Stat. Soc.)
,
163
(
2
), pp.
173
189
.
28.
Hosmer
,
D.
, and
Lemeshow
,
S.
,
1999
,
Applied Survival Analysis
, Wiley, New York, pp.
152
153
.
29.
Joint Committee for Guides in Metrology, Working Group 1,
2008
, “
Evaluation of Measurement Data—Supplement 1 to the ‘Guide to the Expression of Uncertainty in Measurement’ Propagation of Distributions Using a Monte Carlo Method
,”
JCGM
,
101
, pp.
13
16
.
30.
Hayes
,
B.
,
2003
, “
A Lucid Interval
,”
Am. Sci.
,
91
(
6
), pp.
484
488
.
31.
Moore
,
R.
,
1962
, “
Interval Arithmetic and Automatic Error Analysis in Digital Computing
,” Stanford University, Stanford, CA, Technical Report No.
25
.
32.
Kramer
,
W.
,
2006
, “
Generalized Intervals and the Dependency Problem
,”
Proc. Appl. Math. Mech.
,
6
(
1
), pp.
683
684
.
33.
LaFleur
,
R.
,
2015
, “
Uncertainty Arithmetics Applied to the Black-Scholes Model, Report to the Shipley Center
,” Shipley Center, Clarkson University, Potsdam, NY,
Report
.
34.
Kline
,
S.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
35.
Olver
,
F.
,
1978
, “
A New Approach to Error Arithmetic
,”
SIAM J. Numer. Anal.
,
15
(
2
), pp.
368
393
.
You do not currently have access to this content.