Where heterogeneous material considerations may yield more accurate estimates of long bones' modal characteristics, homogeneous description yields faster approximate solutions. Here, modal frequencies of (bovine) long tibia bones are numerically estimated using the finite element method (FEM) (ANSYS) starting from anatomically accurate computed tomography (CT) scans. Whole long bones are segmented into cortical and cancellous constituents based on Hounsfield (HU) values. Accurate three-dimensional (3D) models are consequently developed. Bones' cortical and cancellous constituents are first treated as heterogeneous material. Relative to stiffness–density relations, stiffness values are assigned for each element yielding a stiffness-graded structure. Calculated modal frequencies are compared to those measured from dynamic experiments. Analysis was repeated where bone properties are homogenized by averaging the stiffness properties of bone constituents. Compared with experimental values of one control long bone, the heterogeneous material assumption returned good estimates of the frequency values in the cranial–caudal (CC) plane with of +0.85% for mode 1 and +10.66% for mode 2. For homogeneous material assumption, underestimates were returned with error values of −13.25% and −0.13% differences for mode 2. In the medial–lateral (ML) plane, heterogeneous material assumption returned good frequency estimates with −8.89% for mode 1 and +1.01% for mode 2. Homogeneous material assumption underestimated the frequency values with error of −20.52% for mode 1 and −7.50% for mode 2. Homogeneous simplifications yielded faster and more memory-efficient FEM runs with heterogeneous modal analysis requiring 1.5 more running time and twice the utilized memory.

References

References
1.
Hobatho
,
M. C.
,
Darmana
,
R.
,
Pastor
,
P.
,
Barrau
,
J. J.
,
Laroze
,
S.
, and
Morucci
,
J. P.
,
1991
, “
Development of a Three Dimensional Finite Element Model of a Human Tibia Using Experimental Modal Analysis
,”
J. Biomech.
,
24
(6), pp.
371
383
.
2.
Fan
,
Y.
,
Fan
,
Y.
,
Li
,
Z.
,
Loan
,
M.
,
Lv
,
C.
, and
Bo
,
Z.
,
2011
, “
Optimal Principle of Bone Structure
,”
PLoS One
,
6
(
12
), p.
e28868
.
3.
Gupta
,
A.
, and
Tse
,
K. M.
, 2013, “
Finite Element Analysis on Vibration Modes of Femur Bone
,”
International Conference on Advances in Mechanical Engineering
(
AME
), NCR, India, Dec. 10–13, pp. 827–831.http://searchdl.org/public/book_series/elsevierst/6/519_1.pdf
4.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1977
, “
The Compressive Behavior of Bone as a Two-Phase Porous Structure
,”
J. Bone Jt. Surg. Ser. A
,
59
(7), pp.
954
962
.
5.
Couteau
,
B.
,
Hobatho
,
M. C.
,
Darmana
,
R.
,
Brignola
,
J. C.
, and
Arlaud
,
J. Y.
,
1998
, “
Finite Element Modelling of the Vibrational Behavior of the Human Femur Using CT-Based Individualized Geometrical and Material Properties
,”
J. Biomech.
,
31
(4), pp.
383
386
.
6.
Haiat
,
G.
,
Naili
,
S.
,
Grimal
,
Q.
,
Talmant
,
M.
,
Desceliers
,
C.
, and
Soize
,
C.
,
2009
, “
Finite Element Model of the Ultrasonic Propagation in Cortical Bone: Application to the Axial Transmission Device
,”
19ème Congrès Français de Mècanique
, Marseille, France, Aug. 24–28, pp.
24
28
.http://documents.irevues.inist.fr/bitstream/handle/2042/36608/985.pdf?...1
7.
Au
,
A. G.
,
Liggins
,
A. B.
,
Raso
,
V. J.
, and
Amirfazli
,
A.
,
2005
, “
A Parametric Analysis of Fixation Post Shape in Tibial Knee Prostheses
,”
Med. Eng. Phys
,
27
(2), pp.
123
134
.
8.
Yao
,
H.
,
Dao
,
M.
,
Carnelli
,
D.
,
Tai
,
K.
, and
Ortiz
,
C.
,
2011
, “
Size-Dependent Heterogeneity Benefits the Mechanical Performance of Bone
,”
J. Mech. Phys. Solids
,
59
(1), pp.
64
74
.
9.
Hage
,
I. S.
, and
Hamade
,
R. F.
,
2013
, “
Segmentation of Histology Slides of Cortical Bone Using Pulse Coupled Neural Networks Optimized by Particle-Swarm Optimization
,”
Comput. Med. Imaging Graph.
,
37
(7), pp.
466
474
.
10.
Hage
,
I. S.
, and
Hamade
,
R. F.
,
2015
, “
Distribution of Porosity in Cortical (Bovine) Bone
,”
ASME
Paper No. IMECE2015-51703.
11.
Hage
,
I. S.
, and
Hamade
,
R. F.
,
2016
, “
Geometric-Attributes-Based Segmentation of Cortical Bone Slides Using Optimized Neural Networks
,”
J. Bone Miner. Metab.
,
34
(3), pp.
251
265
.
12.
Xin
,
P.
,
Nie
,
P.
,
Jiang
,
B.
,
Deng
,
S.
,
Hu
,
G.
, and
Shen
,
S. G. F.
,
2013
, “
Material Assignment in Finite Element Modeling: Heterogeneous Properties of Mandibular Bone
,”
J. Craniofacial Surg.
,
24
, pp.
405
410
.
13.
Innovation Suite Research, 2017, “
Mimics Student Edition Course Book
,” Innovation Suite Research, Materialize, Leuven, Belgium, accessed Jan. 10, 2017, http://www.materialise.com/en/medical/software/mimics
14.
Wang
,
S.
,
Chen
,
N.
,
Chen
,
C. S.
, and
Zhu
,
X.
,
2009
, “
Finite Element-Based Approach to Modeling Heterogeneous Objects
,”
Finite Elem. Anal. Des.
,
45
(8–9), pp.
592
596
.
15.
Kou
,
X. X.
, and
Tan
,
S. T.
,
2007
, “
Heterogeneous Object Modelling: A Review
,”
Comput. Aided Des.
,
39
(4), pp.
284
301
.
16.
Yassine
,
R.
,
Elham
,
M. K.
,
Mustafa
,
S.
, and
Hamade
,
R.
, 2017, “
A Detailed Methodology for FEM Analysis of Long Bones From CT Using Mimics
,”
ASME
Paper No. IMECE2017-72571.
17.
Choucair
,
I.
,
Mustapha
,
S.
,
Fakhreddine
,
A.
,
Sayegh
,
M.
, and
Hamade
,
R. F.
,
2016
, “
Investigation of the Dynamic Characteristics of Bovine Tibia Using the Impulse Response Method
,”
ASME
Paper No. IMECE2016-66554.
18.
Snyder
,
S. M.
, and
Schneider
,
E.
,
1991
, “
Estimation of Mechanical Properties of Cortical Bone by Computed Tomography
,”
J. Orthop. Res.
,
9
(
3
), pp.
422
–4
31
.
19.
Gupta
,
S.
, and
Dan
,
P.
,
2004
, “
Bone Geometry and Mechanical Properties of the Human Scapula Using Computed Tomography Data
,”
Biomater. Artif. Organs.
,
17
(
2
), pp.
61
70
.http://biomaterials.org.in/ojs/index.php/tibao/article/view/223
20.
Hage
,
I. S.
,
Seif
,
C. Y.
, and
Hamade
,
R. F.
,
2016
, “
Measuring Compressive Modulus of Elasticity Across Cortical Bone Thickness of Mid-Diaphysis Bovine Femur
,”
ASME
Paper No. IMECE2016-66383.
You do not currently have access to this content.