This is an informed assessment of the state of the art and an extensive inventory of modeling approaches and methods for soft tissue/medical cutting tool interaction and of the associated medical processes and phenomena. Modeling and simulation through numerical, theoretical, computational, experimental, and other methods was discussed in comprehensive review sections each of which is concluded with a plausible prospective discussion biased toward the development of so-called virtual reality (VR) simulator environments. The finalized prospective section reflects on the future demands in the area of soft tissue cutting modeling and simulation mostly from a conceptual angle with emphasis on VR development requirements including real-time VR simulator response, cost-effective “close-to-reality” VR implementations, and other demands. The review sections that serve as the basis for the suggested prospective needs are categorized based on: (1) Major VR simulator applications including virtual surgery education, training, operation planning, intraoperative simulation, image-guided surgery, etc. and VR simulator types, e.g., generic, patient-specific and surgery-specific and (2) Available numerical, theoretical, and computational methods in terms of robustness, time effectiveness, computational cost, error control, and accuracy of modeling of certain types of virtual surgical interventions and their experimental validation, geared toward ethically driven artificial “phantom” tissue-based approaches. Digital data processing methods used in modeling of various feedback modalities in VR environments are also discussed.

References

References
1.
Wang
,
L.
,
Hill
,
N. A.
,
Roper
,
S. M.
, and
Luo
,
X.
,
2018
, “
Modelling Peeling- and Pressure-Driven Propagation of Arterial Dissection
,”
J. Eng. Math.
,
109
(1), pp. 227–238.
2.
Quesada
,
C.
,
Alfaro
,
I.
,
González
,
D.
,
Chinesta
,
F.
, and
Cueto
,
E.
,
2017
, “
Haptic Simulation of Tissue Tearing During Surgery
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(3), p. e2926.
3.
Garbey
,
M.
,
Bass
,
B. L.
,
Collet
,
C.
,
de Mathelin
,
M.
, and
Tran-Son-Tay
,
R.
,
2010
,
Computational Surgery and Dual Training
,
Springer-Verlag
,
New York
.
4.
Deguchi
,
D.
,
Mori
,
K.
,
Mekada
,
Y.
,
Hasegawa
,
J.-I.
,
Toriwaki
,
J.-I.
, and
Noguchi
,
M.
,
2006
, “
Development of a Virtual Needle Biopsy Simulation System for the Virtual Prostate
,”
Syst. Comput. Jpn.
,
37
(
1
), pp.
93
104
.
5.
De
,
S.
,
Lim
,
Y.-J.
,
Manivannan
,
M.
, and
Srinivasan
,
M. A.
,
2006
, “
Physically Realistic Virtual Surgery Using the Point-Associated Finite Field (PAFF) Approach
,”
Presence
,
15
(
3
), pp.
294
308
.
6.
Misra
,
S.
,
Ramesh
,
K. T.
, and
Okamura
,
A. M.
,
2008
, “
Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review
,”
Presence: Teleoperators Virtual Environ.
,
17
(
5
), pp.
463
491
.
7.
Takacs
,
A.
,
Jordan
,
S.
,
Precup
,
R.-E.
,
Kovacs
,
L.
,
Tar
,
J.
,
Rudas
,
I.
, and
Haidegger
,
T.
,
2014
, “
Review of Tool-Tissue Interaction Models for Robotic Surgery Applications
,”
12th International Symposium on Applied Machine Intelligence and Informatics
(
SAMI
), Herl'any, Slovakia, Jan. 23–25, pp.
339
344
.
8.
Cueto
,
E.
, and
Chinesta
,
F.
,
2014
, “
Real Time Simulation for Computational Surgery: A Review
,”
Adv. Model. Simul. Eng. Sci.
,
1
(
1
), pp.
1
11
.
9.
Miller
,
K.
,
Wittek
,
A.
,
Joldes
,
G.
,
Horton
,
A.
,
Dutta-Roy
,
T.
,
Berger
,
J.
, and
Morris
,
L.
,
2010
, “
Modeling Brain Deformations for Computer-Integrated Neurosurgery
,”
Int. J. Numer. Methods Biomed. Eng.
,
26
(
1
), pp.
117
138
.
10.
Yang
,
T.
,
Yin
,
H.
,
Zhao
,
X.
,
Han
,
J.
, and
Xu
,
W.
,
2014
, “
Interaction Modeling and Simulation of a Flexible Needle Insertion Into Soft Tissues
,”
Joint 45th International Symposium on Robotics and Eighth German Conference on Robotics
(
ISR/ROBOTIK
2014), Munich, Germany, June 2–3, pp.
611
616
.http://ieeexplore.ieee.org/document/6840189/
11.
Jackson
,
R. C.
, and
Cavusoglu
,
M. C.
,
2012
, “
Modeling of Needle-Tissue Interaction Forces During Surgical Suturing
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp.
4675
4680
.
12.
Maghsoudi
,
A.
, and
Jahed
,
M.
,
2010
, “
Multi-Parameter Sensitivity Analysis for Guided Needle Insertion Through Soft Tissue
,”
IEEE EMBS Conference on Biomedical Engineering & Sciences
(
IECBES
2010), Kuala Lumpur, Malaysia, Nov. 30–Dec. 2, pp.
97
100
.
13.
Jankowiak
,
T.
,
Rusinek
,
A.
,
List
,
G.
,
Sutter
,
G.
, and
Abed
,
F.
,
2016
, “
Numerical Analysis for Optimizing the Determination of Dynamic Friction Coefficient
,”
Tribol. Int.
,
95
, pp.
86
94
.
14.
Chanthasopeephan
,
T.
,
Desai
,
J. P.
, and
Lau
,
A. C. W.
,
2007
, “
Modeling Soft-Tissue Deformation Prior to Cutting for Surgical Simulation: Finite Element Analysis and Study of Cutting Parameters
,”
IEEE Trans. Biomed. Eng.
,
54
(
3
), pp.
349
359
.
15.
Misra
,
S.
,
Ramesh
,
K. T.
, and
Okamura
,
A. M.
,
2010
, “
Modeling of Nonlinear Elastic Tissues for Surgical Simulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
6
), pp.
811
818
.
16.
John
,
N. W.
,
Phillips
,
N. I.
,
Cenydd
,
L. A.
,
Coope
,
D.
,
Carleton-Bland
,
N.
,
Kamaly-Asl
,
I.
, and
Gray
,
W. P.
,
2015
, “
A Tablet-Based Virtual Environment for Neurosurgery Training
,”
Presence
,
24
(
2
), pp.
155
162
.
17.
Soler
,
L.
, and
Marescaux
,
J.
,
2008
, “
Patient-Specific Surgical Simulation
,”
World J. Surg.
,
32
(
2
), pp.
208
212
.
18.
Soler
,
L.
, and
Marescaux
,
J.
,
2015
, “
Computer Assisted Abdominal Surgery and Notes
,” University of Strasbourg, Strasbourg, France, accessed Mar. 2, 2018, https://www.lirmm.fr/uee09/doc/Lecturers/Soler.pdf
19.
Vidal
,
F. P.
,
Chalmers
,
N.
,
Gould
,
D. A.
,
Healey
,
A. E.
, and
John
,
N. W.
,
2005
, “
Developing a Needle Guidance Virtual Environment With Patient-Specific Data and Force Feedback
,”
Int. Congr. Ser.
,
1281
, pp.
418
423
.
20.
Soler
,
L.
,
Nicolau
,
S.
,
Fasquel
,
J.-B.
,
Agnus
,
V.
,
Charnoz
,
A.
,
Hostettler
,
A.
,
Moreau
,
J.
,
Forest
,
C.
,
Mutter
,
D.
, and
Marescaux
,
J.
,
2008
, “
Virtual Reality and Augmented Reality Applied to Laparoscopic and Notes Procedures
,”
IEEE International Symposium on Biomedical Imaging: From Nano to Macro
(
ISBI
), Paris, France, May 14–17, pp.
1399
1402
.
21.
Soler
,
L.
,
Cahill
,
R.
, and
Marescaux
,
J.
,
2008
, “
Three Dimensional Imaging
,”
Biliary Lithiasis: Basic Science, Current Diagnosis and Management
,
G.
Borzelino
and
C.
Cordiano
, eds., Springer, Milan, Italy, pp.
93
103
.
22.
Hemelen
,
G. V.
,
Genechten
,
M. V.
,
Reiner
,
L.
,
Desmedt
,
M.
,
Verbruggen
,
E.
, and
Nadjmi
,
N.
,
2015
, “
Three-Dimensional Virtual Planning in Orthognathic Surgery Enhances the Accuracy of Soft Tissue Prediction
,”
J. Cranio-Maxillo-Fac. Surg.
,
43
(
6
)pp.
918
925
.
23.
Doscher
,
M. E.
,
Garfein
,
E. S.
,
Bent
,
J.
, and
Tepper
,
O. M.
,
2014
, “
Neonatal Mandibular Distraction Osteogenesis: Converting Virtual Surgical Planning Into an Operative Reality
,”
Int. J. Pediatr. Otorhinolaryngol.
,
78
(
2
), pp.
381
384
.
24.
Diana
,
M.
, and
Marescaux
,
J.
,
2015
, “
Next Step in Minimally Invasive Surgery: Hybrid-Guided Surgery
,”
J. Pediatr. Surg.
,
50
(
1
), pp.
30
36
.
25.
Foruzan
,
A. H.
,
Chen
,
Y.-W.
,
Zoroofi
,
R. A.
, and
Kaibori
,
M.
,
2010
, “
Interactive Visualization of Hepatic Parenchyma With Applications to Surgery Simulators
,”
17th Iranian Conference of Biomedical Engineering
(
ICBME
2010), Isfahan, Iran, Nov. 3–4, pp.
1
4
.
26.
Kim
,
Y.
,
Lee
,
K.
, and
Kim
,
W.
,
2008
, “
3D Virtual Simulator for Breast Plastic Surgery
,”
Comput. Animation Virtual Worlds
,
19
(
3–4
), pp.
515
526
.
27.
Song
,
L. M.
,
Luo
,
J.
, and
Wen
,
Y. H.
,
2009
, “
Three-Dimensional Virtual Surgery Based on CT Images
,”
Third International Conference on Bioinformatics and Biomedical Engineering
(
ICBBE
2009), Beijing, China, June 11–13, pp.
1
4
.
28.
Liang
,
H.
, and
Shi
,
M.
,
2009
, “
Design of Virtual Abdominal Surgery System for the UK's Royal Bournemouth Hospital
,”
International Conference on Knowledge and Systems Engineering
(
KSE
), Hanoi, Vietnam, Oct. 13–17, pp.
39
43
.
29.
Kero
,
T.
,
Pettersson
,
A.
,
Fäldt
,
J.
,
Andersson
,
M.
,
Gillot
,
L.
,
Cannas
,
B.
, DDS
Näsström
,
K.
, and
Söderberg
,
R.
,
2010
, “
Virtual Variation Simulation of CAD/CAM Template-Guided Surgeries Performed on Human Cadavers—Part 2
,”
J. Prosthet. Dent.
,
104
(
1
), pp.
48
55
.
30.
Uechi
,
J.
,
Tsuji
,
Y.
,
Konno
,
M.
,
Hayashi
,
K.
,
Shibata
,
T.
,
Nakayama
,
E.
, and
Mizoguchi
,
I.
,
2015
, “
Generation of Virtual Models for Planning Orthognathic Surgery Using a Modified Multimodal Image Fusion Technique
,”
Int. J. Oral Maxillofac. Surg.
,
44
(
4
), pp.
462
469
.
31.
Cecil
,
J.
, and
Pirela-Cruz
,
M.
,
2011
, “
An Information Model Based Framework for Virtual Micro Surgery
,”
Int. J. Virtual Reality
,
10
(
2
), pp.
17
31
.https://hal-cstb.archives-ouvertes.fr/ENIB/hal-01530539
32.
Chellali
,
A.
,
Dumas
,
C.
, and
Milleville-Pennel
,
I.
,
2012
, “
Haptic Communication to Support Biopsy Procedures Learning in Virtual Environments
,”
Presence
,
21
(
4
), pp.
470
489
.
33.
Delingette
,
H.
, and
Ayache
,
N.
,
2005
, “
Hepatic Surgery Simulation
,”
Commun. ACM
,
48
(
2
), pp.
31
36
.
34.
Drebin
,
R. A.
,
Carpenter
,
L.
, and
Hanrahan
,
P.
,
1988
, “
Volume Rendering
,”
ACM SIGGRAPH Comput. Graph.
,
22
(
4
), pp.
65
74
.
35.
Courtecuisse
,
H.
,
Allard
,
J.
,
Kerfriden
,
P.
,
Bordas
,
S. P. A.
,
Cotin
,
S.
, and
Duriez
,
C.
,
2014
, “
Real-Time Simulation of Contact and Cutting of Heterogeneous Soft-Tissues
,”
Med. Image Anal.
,
18
(
2
), pp.
394
410
.
36.
Buzink, S. N.
,
Goossens, R. H.
,
De Ridder, H.
, and
Jakimowicz, J. J.
, 2010, “
Training of Basic Laparoscopy Skills on SimSurgery SEP
,”
Minim. Invasive. Ther. Allied Technol.
,
19
(1), pp. 35–41.
37.
Schreuder
,
H. W. R.
,
Persson
,
J. E. U.
,
Wolswijk
,
R. G. H.
,
Ihse
,
I.
,
Schijven
,
M. P.
, and
Verheijen
,
R. H. M.
,
2014
, “
Validation of a Novel Virtual Reality Simulator for Robotic Surgery
,”
Sci. World J.
,
2014
, p. 507076.
38.
Kneebone
,
R.
,
2003
, “
Simulation in Surgical Training: Educational Issues and Practical Implications
,”
Med. Educ.
,
37
(
3
), pp.
267
277
.
39.
Tanoue
,
K.
,
Yasunaga
,
T.
,
Konishi
,
K.
,
Okazakia
,
K.
,
Ieiri
,
S.
,
Kawabe
,
Y.
,
Matsumoto
,
K.
,
Kakeji
,
Y.
, and
Hashizum
,
M.
,
2005
, “
Effectiveness of Training for Endoscopic Surgery Using a Simulator With Virtual Reality: Randomized Study
,”
Int. Congr. Ser.
,
1281
, pp.
515
520
.
40.
Kleinert
,
R.
,
Heiermann
,
N.
,
Wahba
,
R.
,
Chang
,
D.-H.
, A. H.,
Hölscher
,
A. H.
, and
Stippel
,
D. L.
,
2015
, “
Design, Realization, and First Validation of an Immersive Web-Based Virtual Patient Simulator for Training Clinical Decisions in Surgery
,”
J. Surg. Educ.
,
72
(
6
), pp.
1131
1138
.
41.
Haverly
,
M.
,
Dupont
,
P.
, and
Triedman
,
J.
,
2005
, “
Trajectory Optimization for Dynamic Needle Insertion
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
1646
1651
.
42.
Pellen
,
M. G.
,
Horgan
,
L. F.
,
Barton
,
J. R.
, and
Attwood
,
S. E.
,
2009
, “
Construct Validity of the ProMIS Laparoscopic Simulator
,”
Surg. Endosc.
,
23
(
1
), pp.
130
139
.
43.
Abelson
,
J. S.
,
Silverman
,
E. P. A.
,
Banfelder
,
J.
,
Naides
,
A.
,
Costa
,
R.
, and
Dakin
,
G.
,
2015
, “
Virtual Operating Room for Team Training in Surgery
,”
Am. J. Surg.
,
210
(
3
), pp.
585
590
.
44.
Basdogan
,
C.
,
Ho
,
C.-H.
, and
Srinivasan
,
M. A.
,
2001
, “
Virtual Environments for Medical Training: Graphical and Haptic Simulations of Laparoscopic Common Bile Duct Exploration
,”
IEEE/ASME Trans. Mechatronics
,
6
(
3
), pp.
269
285
.
45.
Miller
,
K.
,
Horton
,
A.
,
Joldes
,
G. R.
, and
Wittek
,
A.
,
2012
, “
Beyond Finite Elements: A Comprehensive, Patient-Specific Neurosurgical Simulation Utilizing a Meshless Method
,”
J. Biomech.
,
45
(
15
), pp.
2698
2701
.
46.
Cheah
,
T. C.
,
Rathinam
,
A. K.
,
Shanmugam
,
S. A.
, and
Waran
,
V.
,
2012
, “
Modeling the Interaction Between Navigation Probe and Deformable Brain Tissue Based on Finite Element Analysis: Preliminary Study
,”
IEEE EMBS International Conference on Biomedical Engineering and Sciences
(
IECBES
), Langkawi, Malaysia, Dec. 17–19, pp.
519
524
.
47.
Dumenil
,
A.
,
Kaladji
,
A.
,
Castro
,
M.
,
Esneault
,
S.
,
Lucas
,
A.
,
Rochette
,
M.
,
Goksu
,
C.
, and
Haigron
,
P.
,
2013
, “
Finite-Element-Based Matching of Pre- and Intraoperative Data for Image-Guided Endovascular Aneurysm Repair
,”
IEEE Trans. Biomed. Eng.
,
60
(
5
), pp.
1353
1362
.
48.
Markelj
,
P.
,
Tomazevic
,
D.
,
Likar
,
B.
, and
Pernus
,
F.
,
2012
, “
A Review of 3D/2D Registration Methods for Image-Guided Interventions
,”
Med. Image Anal.
,
16
(
3
), pp.
642
661
.
49.
Lee
,
S.-L.
,
Lerotic
,
M.
,
Vitiello
,
V.
,
Giannarou
,
S.
,
Kwok
,
K.-W.
,
Visentini-Scarzanella
,
M.
, and
Yang
,
G.-Z.
,
2010
, “
From Medical Images to Minimally Invasive Intervention: Computer Assistance for Robotic Surgery
,”
Comput. Med. Imaging Graph.
,
34
(
1
), pp.
33
45
.
50.
Horton
,
A.
,
Wittek
,
A.
, and
Miller
,
2007
, “
Subject-Specific Biomechanical Simulation of Brain Indentation Using a Meshless Method
,”
Tenth International Conference on Medical Image Computing and Computer Assisted Intervention
(
MICCAI
), Brisbane, Australia, Oct. 29–Nov. 2, pp.
541
548
.
51.
Tendela
,
L.
,
Navarro
,
L.
, and
Molimard
,
J.
,
2015
, “
3D Full-Field Strain Measurements in Soft Tissues Using Digital Volume Correlation
,”
Sixth International Conference on Optical Measurement Techniques for Structures & Systems
(OPTIMESS), Anvers, Belgium, Apr., Paper No.
23
.https://hal.archives-ouvertes.fr/hal-01406510
52.
Jirousek
,
O.
,
Jandejsek
,
I.
, and
Vavrık
,
D.
,
2011
, “
Evaluation of Strain Field in Microstructures Using Micro-CT and Digital Volume Correlation
,”
12th International Workshop on Radiation Imaging Detectors
, Cambridge, UK, July 11–15, pp.
1
5
.http://iopscience.iop.org/article/10.1088/1748-0221/6/01/C01039/pdf
53.
Mosegaard
,
J.
, and
Sørensen
,
T. S.
,
2006
, “
An Introduction to GPU Accelerated Surgical Simulation
,”
International Symposium on Biomedical Simulation
(
ISBMS
), Zurich, Switzerland, July 10–11, pp.
93
104
.
54.
Taylor
,
Z. A.
,
Cheng
,
M.
, and
Ourselin
,
S.
,
2008
, “
High-Speed Nonlinear Finite Element Analysis for Surgical Simulation Using Graphics Processing Units
,”
IEEE Trans. Med. Imaging
,
27
(
5
), pp.
650
663
.
55.
Panchatcharam
,
M.
,
Sundar
,
S.
,
Vetrivel
,
V.
,
Klar
,
A.
, and
Tiwari
,
S.
,
2013
, “
GPU Computing for Meshfree Particle Method
,”
Int. J. Numer. Anal. Model.
,
4
(
4
), pp.
394
412
.http://www.math.ualberta.ca/ijnamb/Volume-4-2013/No-4-13/2013-04-06.pdf
56.
Wierzbicki
,
M.
,
Drangova
,
M.
,
Guiraudon
,
G.
, and
Peters
,
T.
,
2004
, “
Validation of Dynamic Heart Models Obtained Using Non-Linear Registration for Virtual Reality Training, Planning, and Guidance of Minimally Invasive Cardiac Surgeries
,”
Med. Image Anal.
,
8
(
3
), pp.
387
401
.
57.
Krokos
,
M.
,
Podgorelec
,
D.
,
Clapworthy
,
G. J.
,
Liang
,
R. H.
,
Testi
,
D.
, and
Viceconti
,
M.
,
2005
, “
Patient-Specific Muscle Models for Surgical Planning
,”
International Conference on Medical Information Visualisation – Biomedical Visualisation
(
MedVis
2005), London, July 5–7, pp.
3
8
.
58.
Li
,
M.
,
Miller
,
K.
,
Joldes
,
G. R.
,
Doyle
,
B.
,
Garlapati
,
R. R.
,
Kikinis
,
R.
, and
Wittek
,
A.
,
2015
, “
Patient-Specific Biomechanical Model as Whole-Body CT Image Registration Tool
,”
Med. Image Anal.
,
22
(
1
), pp.
22
34
.
59.
Audette
,
M. A.
,
Delingette
,
H.
, and
Fuchs
,
A.
,
2003
, “
A Procedure for Computing Patient-Specific Anatomical Models for Finite Element-Based Surgical Simulation
,”
Int. Congr. Ser.
,
1256
, pp.
356
361
.
60.
Boyer
,
G.
,
Molimard
,
J.
,
Tkaya
,
M. B.
,
Zahouani
,
H.
,
Pericoi
,
M.
, and
Avril
,
S.
,
2013
, “
Assessment of the In-Plane Biomechanical Properties of Human Skin Using a Finite Element Model Updating Approach Combined With an Optical Full-Field Measurement on a New Tensile Device
,”
J. Mech. Behav. Biomed. Mater.
,
27
, pp.
273
282
.
61.
Wittek
,
A.
,
Grosland
,
N. M.
,
Joldes
,
G. R.
,
Magnotta
,
V.
, and
Miller
,
K.
,
2016
, “
From Finite Element Meshes to Clouds of Points: A Review of Methods for Generation of Computational Biomechanics Models for Patient-Specific Applications
,”
Ann. Biomed. Eng.
,
44
(
1
), pp.
3
15
.
62.
Lam
,
C. K.
,
Sundaraj
,
K.
, and
Sulaiman
,
M. N.
,
2012
, “
Virtual Simulation of Eyeball and Extraocular Muscle Reaction During Cataract Surgery
,”
Procedia Eng.
,
41
, pp.
150
155
.
63.
Hanna
,
L.
,
2010
, “
Simulated Surgery: The Virtual Reality of Surgical Training
,”
Surg. J.
,
28
(
9
), pp.
463
468
.
64.
Berkley
,
J.
,
Turkiyyah
,
G.
,
Berg
,
D.
,
Ganter
,
M.
, and
Weghorst
,
S.
,
2004
, “
Real-Time Finite Element Modeling for Surgery Simulation: An Application to Virtual Suturing
,”
IEEE Trans. Visualization Comput. Graph.
,
10
(
3
), pp.
314
325
.
65.
Wang
,
P.
,
Becker
,
A. A.
,
Jones
,
I. A.
,
Glover
,
A. T.
,
Benford
,
S. D.
,
Greenhalgh
,
C. M.
, and
Vloeberghs
,
M.
,
2007
, “
Virtual Reality Simulation of Surgery With Haptic Feedback Based on the Boundary Element Method
,”
Comput. Struct.
,
85
(
7–8
), pp.
331
339
.
66.
Ho
,
C.-H.
,
Basdogan
,
C.
, and
Srinivasan
,
M. A.
,
2000
, “
Ray Based Haptic Rendering: Force and Torque Interactions Between a Line Probe and 3D Objects in Virtual Environment
,”
Int. J. Rob. Res.
,
19
(
7
), pp.
668
683
.
67.
Ho
,
S.
,
Sarma
,
S.
, and
Adachi
,
Y.
,
2001
, “
Real-Time Interference Analysis Between a Tool and an Environment
,”
Comput.-Aided Des.
,
33
(
13
), pp.
935
947
.
68.
González-Estrada
,
O. A.
,
Rodenas
,
J. J.
,
Bordas
,
S. P. A.
,
Nadal
,
E.
,
Kerfriden
,
P.
, and
Fuenmayor
,
F. J.
,
2015
, “
Locally Equilibrated Stress Recovery for Goal Oriented Error Estimation in the Extended Finite Element Method
,”
Comput. Struct.
,
152
, pp.
1
10
.
69.
Bordas
,
S.
, and
Duflot
,
M.
,
2007
, “
Derivative Recovery and a Posteriori Error Estimate for Extended Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
35–36
), pp.
3381
3399
.
70.
Yu-jin
,
F.
,
Kui
,
Y.
,
Qing-xiu
,
D.
, and
Wei-guo
,
S.
,
2005
, “
Development of a Virtual Surgery System With a Virtual Scalpel
,”
IEEE International Conference on Information Acquisition
(
ICIA
), Hong Kong, China, June 27–July 3, pp.
253
257
.
71.
Hasegawa
,
S.
,
Funayama
,
H.
, and
Wei
,
D.
,
2007
, “
A Virtual Reality Simulating Catheter Manipulations
,”
Int. J. Bioelectromagn.
,
9
(
2
), pp.
125
126
.http://www.ijbem.org/volume9/number2/57.pdf
72.
Altomonte
,
M.
,
Zerbato
,
D.
,
Botturi
,
D.
, and
Fiorini
,
P.
,
2008
, “
Simulation of Deformable Environment With Haptic Feedback on GPU
,”
IEEE International Conference on Intelligent Robots and Systems
(
IROS
), Nice, France, Sept. 22–26, pp.
3959
3964
.
73.
Ehmann
,
K.
, and
Malukhin
,
K.
,
2012
, “
A Generalized Analytical Model of the Cutting Angles of a Biopsy Needle Tip
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061001
.
74.
Datla
,
N. V.
,
Konh
,
B.
,
Honarvar
,
M.
,
Podder
,
T. K.
,
Dicker
,
A. P.
,
Yu
,
Y.
, and
Hutapea
,
P.
,
2014
, “
A Model to Predict Deflection of Bevel-Tipped Active Needle Advancing in Soft Tissue
,”
Med. Eng. Phys.
,
36
(
3
), pp.
285
293
.
75.
Wu
,
J.
,
Westermann
,
R.
, and
Dick
,
C.
,
2015
, “
A Survey of Physically Based Simulation of Cuts in Deformable Bodies
,”
Comput. Graph. Forum
,
34
(
6
), pp.
161
187
.
76.
Jalocha
,
D.
,
Constantinescu
,
A.
, and
Neviere
,
R.
,
2015
, “
Revisiting the Identification of Generalized Maxwell Models From Experimental Results
,”
Int. J. Solids Struct.
,
67–68
, pp.
169
181
.
77.
Kim
,
B.
,
Lee
,
S. B.
,
Lee
,
J.
,
Cho
,
S.
,
Park
,
H.
,
Yeom
,
S.
, and
Park
,
S. H.
,
2012
, “
A Comparison Among Neo-Hookean Model, Mooney-Rivlin Model, and Ogden Model for Chloroprene Rubber
,”
Int. J. Precis. Eng. Manuf.
,
13
(
5
), pp.
759
764
.
78.
Luca
,
A. D.
,
Mattone
,
R.
, and
Oriolo
,
G.
,
1998
, “
Steering a Class of Redundant Mechanisms Through End-Effector Generalized Forces
,”
IEEE Trans. Rob. Autom.
,
14
(
2
), pp.
329
335
.
79.
van den Berg
,
J.
,
Patil
,
S.
,
Alterovitz
,
R.
,
Abbeel
,
P.
, and
Goldberg
,
K.
,
2010
, “
LQG-Based Planning, Sensing, and Control of Steerable Needles
,”
Algorithmic Foundations of Robotics IX
, Springer, Berlin, pp.
373
389
.
80.
Cowin
,
S. C.
, and
Doty
,
S. B.
,
2007
,
Tissue Mechanics
,
Springer Science + Business Media
,
LLC, New York
, p.
682
.
81.
Chen
,
H.
,
Zhao
,
X.
,
Lu
,
X.
, and
Kassab
,
G.
,
2013
, “
Non-Linear Micromechanics of Soft Tissues
,”
Int. J. Nonlinear Mech.
,
56
, pp.
79
85
.
82.
Anssari-Benam
,
A.
,
Bucchi
,
A.
, and
Bader
,
D. L.
,
2015
, “
Unified Viscoelasticity: Applying Discrete Element Models to Soft Tissues With Low Characteristic Times
,”
J. Biomech.
,
48
(
12
), pp.
3128
3134
.
83.
Muliana
,
A.
,
Rajagopal
,
K. R.
, and
Tscharnuter
D.
,
2015
, “
A Nonlinear Integral Model for Describing Responses of Viscoelastic Solids
,”
Int. J. Solids Struct.
,
58
, pp.
146
156
.
84.
Mihai
,
L. A.
,
Chin
,
L.
,
Janmey
,
P. A.
, and
Coriely
,
A.
,
2015
, “
A Comparison of Hyperelastic Constitutive Models Applicable to Brain and Fat Tissues
,”
J. R. Soc. Interface
,
12
(
110
), pp.
1
12
.
85.
Horgan
,
C. O.
, and
Schwartz
,
J. G.
,
2005
, “
Constitutive Modeling and the Trousers Test for Fracture of Rubber-Like Materials
,”
J. Mech. Phys. Solids
,
53
(
3
), pp.
454
564
.
86.
De Borst
,
R.
,
Cristfield
,
M. A.
,
Remmers
,
J. J. C.
, and
Verhoosel
,
C. V.
,
2012
,
Non-Linear Finite Element Analysis of Solids and Structures
,
Wiley
,
Chichester, UK
.
87.
Marques
,
S. P. C.
, and
Creus
,
G. J.
,
2012
,
Computational Viscoelasticity
,
Springer
, Berlin.
88.
Martins
,
P. A. L. S.
,
Joerge
,
N. R. M.
, and
Ferreira
,
A. J. M.
,
2006
, “
A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues
,”
Strain
,
42
(
3
), pp.
135
147
.
89.
Hoss
,
L.
, and
Marzcak
,
R. J.
,
2010
, “
A New Constitutive Model for Rubber-like Materials
,”
Mec. Computacional
,
XXIX
, pp.
2759
2773
.http://www.cimec.org.ar/ojs/index.php/mc/article/viewFile/3194/3121
90.
Takács
,
Á.
,
Kovács
,
L.
, and
Rudas
,
I. J.
,
2015
, “
Models for Force Control in Telesurgical Robot Systems
,”
Acta Polytech. Hung.
,
12
(
8
), pp.
95
114
.https://www.uni-obuda.hu/journal/Takacs_Kovacs_Rudas_Precup_Haidegger_64.pdf
91.
Guo
,
J.
,
Li
,
P.
,
Yan
,
H.
, and
Ren
,
H.
,
2016
, “
Viscoelastic Model Based Bilateral Teleoperation for Robotic-Assisted Tele-Palpation
,”
Assem. Autom.
,
37
(
3
), pp. 322–334.
92.
Kiss
,
M. Z.
,
Varghese
,
T.
, and
Hall
,
J. T.
,
2004
, “
Viscoelastic Characterization of In Vivo Canine Tissue
,”
Phys. Med. Biol.
,
49
(
18
), pp.
4207
4218
.
93.
Caputo
,
M.
,
Carcione
,
J. M.
, and
Cavalli
,
F.
,
2011
, “
Wave Simulation in Biologic Media Based on the Kelvin-Voigt Fractional-Derivative Stress-Strain Relation
,”
Ultrasound Med. Biol.
,
37
(
6
), pp.
996
1004
.
94.
Clayton
,
H. E.
,
Garbow
,
J. R.
, and
Bayly
,
P. V.
,
2011
, “
Frequency-Dependent Viscoelastic Parameters of Mouse Brain Tissue Estimated by MR Elastography
,”
Phys. Med. Biol.
,
56
(
8
), pp.
2391
2406
.
95.
Malukhin
,
K.
, and
Ehmann
,
E.
,
2015
, “
Model of a NiTi Shape Memory Alloy Actuator
,”
J. Intell. Mater. Syst. Struct.
,
26
(
4
), pp.
386
399
.
96.
Tabatabaei
,
S. S.
,
Talebi
,
H. A.
, and
Tavakoli
,
M.
,
2017
, “
Non-Integer Variable Order Dynamic Modeling and Identification of Soft Tissue Deformation
,”
American Control Conference
(
ACC
), Seattle, WA, May 24–26, pp.
819
824
.
97.
Destrade
,
M.
,
2002
, “
Small-Amplitude Inhomogeneous Wave in a Deformed Mooney-Rivlin Material
,”
Q. J. Mech. Appl. Math.
,
55
(
1
), pp.
109
126
.
98.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber,” Rubber
,”
Chem. Technol.
,
69
(
1
), pp.
59
61
.
99.
Li
,
K.
,
Zhao
,
H.
,
Liu
,
W.
, and
Yin
,
Z.
,
2015
, “
Material Properties and Constitutive Modeling of Infant Porcine Cerebellum Tissue in Tension at High Strain Rate
,”
PLoS One
,
10
(
4
), pp.
1
12
.
100.
Asaro
,
R. J.
, and
Lubarda
,
V. A.
,
2011
,
Mechanics of Solids and Materials
,
Cambridge University Press
,
New York
.
101.
Destrade
,
M.
,
Gilchrist
,
M. D.
, and
Ogden
,
R. W.
,
2010
, “
Third- and Fourth Order Elasticity of Biological Soft Tissues
,”
J. Acoust. Soc. Am.
,
127
(
4
), pp.
2103
2109
.
102.
Yeoh
,
O. H.
, and
Fleming
,
P. D.
,
1997
, “
A New Attempt to Reconcile the Statistical and Phenomenological Theories of Rubber Elasticity
,”
J. Polym. Sci. Part B: Polym. Phys.
,
35
(
12
), pp.
1919
1931
.
103.
Nasseri
,
S.
,
Bilston
,
L. E.
, and
Phan-Thien
,
N.
,
2002
, “
Viscoelastic Properties of Pig Kidney in Shear, Experimental Results and Modelling
,”
Rheol. Acta
,
41
(
1–2
), pp.
180
192
.
104.
Zhai
,
J.
,
Karuppasamy
,
K.
,
Zvavanjanja
,
R.
,
Fisher
,
M.
,
Fisher
,
A. C.
,
Gould
,
D.
, and
How
,
T.
,
2013
, “
A Sensor for Needle Puncture Force Measurement During Interventional Radiological Procedures
,”
Med. Eng. Phys.
,
35
(
3
), pp.
350
356
.
105.
Kobayashi
,
Y.
,
Hamano
,
R.
,
Watanabe
,
H.
,
Hong
,
J.
,
Toyoda
,
K.
,
Hashizume
,
M.
, and
Fujie
,
M. G.
,
2013
, “
Use of Puncture Force Measurement to Investigate the Conditions of Blood Vessel Needle Insertion
,”
Med. Eng. Phys.
,
35
(
5
), pp.
684
689
.
106.
Azar
,
T.
, and
Hayward
,
V.
,
2008
, “
Estimation of the Fracture Toughness of Soft Tissue From Needle Insertion
,” International Symposium on Biomedical Simulation (
ISBM
), London, July 7–8, pp.
166
175
.
107.
Misra
,
S.
,
Reed
,
K. B.
,
Schafer
,
B. W.
,
Ramesh
,
K. T.
, and
Okamura
,
A. M.
,
2009
, “
Observations and Models for Needle-Tissue Interactions
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
2687
2692
.
108.
Sun
,
W.
, and
Alterovitz
,
R.
,
2014
, “
Motion Planning Under Uncertainty for Medical Needle Steering Using Optimization in Belief Space
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Chicago, IL, Sept. 14–18, pp.
1775
1781
.
109.
Sfakiotakis
,
M.
,
Pateromichelakis
,
N.
, and
Tsakiris
,
D.
,
2014
, “
Vibration-Induced Frictional Reduction in Miniature Intracorporeal Robots
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1210
1221
.
110.
Bloch
,
A. M.
,
Marsden
,
J. E.
, and
Zenkov
,
D. V.
,
2005
, “
Nonholonomic Dynamics
,”
Not. AMS
,
52
(
3
), pp.
320
329
.http://www.ams.org/notices/200503/fea-bloch.pdf
111.
Duriez
,
C.
,
Guebert
,
C.
,
Marchal
,
M.
,
Cotin
,
S.
, and
Grisoni
,
L.
,
2009
, “
Interactive Simulation of Flexible Needle Insertions Based on Constraint Models
,”
Medical Image Computing and Computer-Assisted Intervention
(
MICCAI
), London, Sept. 20–24, pp.
291
299
.
112.
Meltsner
,
M. A.
,
Ferrier
,
N. J.
, and
Thomadsen
,
B. R.
,
2007
, “
Observations on Rotating Needle Insertions Using a Brachytherapy Robot
,”
Phys. Med. Biol.
,
52
(
19
), pp.
6027
6037
.
113.
Park
,
W.
,
Kim
,
J.
,
Zhou
,
Y.
,
Cowan
,
N.
,
Okamura
,
A.
, and
Chirikjian
,
G.
,
2005
, “
Diffusion-Based Motion Planning for a Nonholonomic Flexible Needle Model
,”
IEEE International. Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
4600
4605
.
114.
Zhang
,
E.
,
Antoni
,
J.
, and
Feissel
,
P.
,
2012
, “
Bayesian Force Reconstruction With an Uncertain Model
,”
J. Sound Vib.
,
331
(
4
), pp.
798
814
.
115.
Madireddy
,
S.
,
Sista
,
B.
, and
Vemaganti
,
K.
,
2015
, “
A Bayesian Approach to Selecting Hyperelastic Constitutive Models of Soft Tissue
,”
Comput. Methods Appl. Mech. Eng.
,
291
, pp.
102
122
.
116.
Cao
,
D.
,
Sun
,
C.
, and
Yang
,
M.
,
2015
, “
Dynamics for a Stochastic Reaction–Diffusion Equation With Additive Noise
,”
J. Differ. Equations
,
259
(
3
), pp.
838
872
.
117.
Xie
,
H.
, and
Miyata
,
K.
,
2013
, “
Stochastic Modeling of Immersed Rigid-Body Dynamics
,”
SIGGRAPH Asia 2013 Technical Briefs
, Hong Kong, Nov. 19–22, Paper No.
12
.
118.
Bougioukou
,
A. T.
,
Leros
,
A. P.
, and
Papkomstantinou
,
V.
,
2008
, “
Modeling of Non-Stationary Ground Motion Using the Mean Reverting Stochastic Process
,”
Appl. Math. Model.
,
32
(
9
), pp.
1912
1932
.
119.
Atkins
,
A. G.
,
Xu
,
X.
, and
Jeronimidis
,
G.
,
2004
, “
Cutting by ‘Pressing and Slicing’ of Thin Floppy Slices of Materials Illustrated by Experiments on Cheddar Cheese and Salami
,”
J. Mater. Sci.
,
39
(
8
), pp.
2761
2766
.
120.
Sederberg
,
T. W.
, and
Parry
,
S. R.
,
1986
, “
Free-From Deformation of Solid Geometric Methods
,”
13th Annual Conference on Computer Graphics and Interactive Techniques
, Dallas, TX, Aug. 18–22, pp.
151
160
.
121.
Gregory
,
A. D.
,
Ehmann
,
S. A.
, and
Lin
,
M. C.
,
2000
, “
inTouch: Interactive Multiresolution Modeling and 3D Painting With a Haptic Interface
,”
IEEE
Virtual Reality
, New Brunswick, NJ, Mar. 18–22, pp.
45
54
.
122.
Casale
,
M. S.
, and
Stanton
,
E. L.
,
1985
, “
An Overview of Analytic Solid Modeling
,”
IEEE Comput. Graph. Appl.
,
5
(
2
), pp.
45
56
.
123.
Stanton
,
E. L.
,
Crain
,
L. M.
, and
Neu
,
T. F.
,
1977
, “
A Parametric Cubic Modeling System for General Solids of Composites Material
,”
Int. J. Numer. Methods Eng.
,
11
(
4
), pp.
653
670
.
124.
Chen
,
D.
,
Levin
,
D. I. W.
,
Sueda
,
S.
, and
Matusik
,
W.
,
2015
, “
Data-Driven Finite Elements for Geometry and Material Design
,”
ACM Trans. Graph.
,
34
(
4
), pp. 1–10.
125.
Seiler
,
M.
,
Spillmann
,
J.
, and
Harders
,
M.
,
2014
, “
Data-Driven Simulation of Detailed Surface Deformations for Surgery Training Simulators
,”
IEEE Trans. Visualization Comput. Graph.
,
20
(
10
), pp.
1379
1391
.
126.
Banihani
,
S.
,
Rabczuk
,
T.
, and
Almomani
,
T.
,
2013
, “
POD for Real-Time Simulation of Hyperelastic Soft Biological Tissue Using the Point Collocation Method of Finite Spheres
,”
Math. Probl. Eng.
,
2013
, pp.
1
9
.
127.
Niroomandi
,
S.
,
Alfaro
,
I.
,
Gonzalez
,
D.
,
Cueto
,
E.
, and
Chinesta
,
F.
,
2013
, “
Model Order Reduction in Hyperelasticity: A Proper Generalized Decomposition Approach
,”
Int. J. Numer. Methods Eng.
,
96
(3), pp.
129
149
.
128.
Quesada
,
C.
,
González
,
D.
,
Alfaro
,
I.
,
Cueto
,
E.
, and
Chinesta
,
F.
,
2016
, “
Computational Vademecums for Real-Time Simulation of Surgical Cutting in Haptic Environments
,”
Int. J. Numer. Methods Eng.
,
108
(
10
), pp.
1230
1247
.
129.
Bianchi
,
G.
,
Harders
,
M.
, and
Szekely
,
G.
,
2003
, “
Mesh Topology Identification for Mass-Spring Models
,”
Medical Image Computing and Computer-Assisted Intervention
(
MICCAI
), Montreal, QC, Canada, Nov. 15–18, pp.
50
58
.
130.
Marinkovic
,
D.
,
Zehn
,
M.
, and
Marinkovic
,
Z.
,
2012
, “
Finite Element Formulations for Effective Computations of Geometrically Nonlinear Deformations
,”
Adv. Eng. Software
,
50
, pp.
3
11
.
131.
Gelder
,
A. V.
,
1998
, “
Approximate Simulation of Elastic Membranes by Triangulated Spring Meshes
,”
J. Graph. Tools
,
3
(
2
), pp.
21
42
.
132.
Senatore
,
G.
, and
Piker
,
D.
,
2015
, “
Interactive Real-Time Physics an Intuitive Approach to Form-Finding and Structural Analysis for Design and Education
,”
Comput.-Aided Des.
,
61
, pp.
32
41
.
133.
Schoch
,
N.
,
Suwelack
,
S.
,
Speidel
,
S.
,
Dillmann
,
R.
, and
Heuveline
,
V.
,
2013
, “
Simulation of Surgical Cutting in Soft Tissue Using Extended Finite Element Method (X-FEM)
,”
Preprint Series Eng. Math. Comput. Lab
,
4
, pp.
1
36
.
134.
Tagawa
,
K.
,
Oishi
,
T.
, and
Tanaka
,
H. T.
,
2013
, “
Adaptive and Embedded Deformation Model: An Approach to Haptic Interaction With Complex Inhomogeneous Elastic Objects
,”
IEEE World Haptics Conference
(
WHC
), Daejeon, South Korea, Apr. 14–17, pp.
169
174
.
135.
Song
,
C.
,
Zhang
,
H.
,
Wang
,
X.
,
Han
,
J.
, and
Wang
,
H.
,
2014
, “
Fast Corotational Simulation for Example-Driven Deformation
,”
Comput. Graph.
,
40
, pp.
49
57
.
136.
Belytschko
,
T.
,
Lu
,
Y. Y.
, and
Gu
,
L.
,
1994
, “
Element-Free Galerkin Methods
,”
Int. J. Numer. Methods Eng.
,
37
(
2
), pp.
229
256
.
137.
Duan
,
Q.
,
Gao
,
X.
,
Wang
,
B.
,
Li
,
X.
,
Zhang
,
H.
,
Belytschko
,
T.
, and
Shao
,
Y.
,
2014
, “
Consistent Element-Free Galerkin Method
,”
Int. J. Numer. Methods Eng.
,
99
(
2
), pp.
79
101
.
138.
Desbrun
,
M.
,
Schroder
,
P.
, and
Barr
,
A.
,
1999
, “
Interactive Animation of Structured Deformable Objects
,”
Conference on Graphics Interface ‘99
, Kingston, ON, Canada, June 2–4, pp.
1
8
.http://m.multires.caltech.edu/pubs/GI99.pdf
139.
Hsiao
,
K. M.
,
Lin
,
J. Y.
, and
Lin
,
W. Y.
,
1999
, “
A Consistent Co-Rotational Finite Element Formulation for Geometrically Nonlinear Dynamic Analysis of 3-D Beams
,”
Comput. Methods Appl. Mech. Eng.
,
169
(
1–2
), pp.
1
18
.
140.
Belytschko
,
T.
,
Zi
,
G.
,
Xu
,
J.
, and
Chessa
,
J.
,
2003
, “
The Extended Finite Element Method for Arbitrary Discontinuities
,” Computational Mechanics Theory and Practice,
Barcelona
,
Spain
.
141.
Agathos
,
K.
,
Chatzi
,
E.
,
Bordas
,
S. P. A.
, and
Talslidis
,
D.
,
2015
, “
Extended Finite Element Methods With Global Enrichment
,”
Int. J. Numer. Methods Eng.
,
105
(
9
), pp.
1
81
.
142.
Bordas
,
S. P. A.
,
Rabczuk
,
T.
,
Hung
,
N.-X.
,
Nguyen
,
V. P.
,
Natarajan
,
S.
,
Bog
,
T.
,
Quan
,
D. M.
, and
Hiep
,
N. V.
,
2010
, “
Strain Smoothing in FEM and XFEM
,”
Comput. Struct.
,
88
(
23–24
), pp.
1419
1443
.
143.
Vigneron
,
L. M.
,
Duflot
,
M. P.
,
Robe
,
P. A.
,
Warfield
,
S. K.
, and
Verly
,
J. G.
,
2009
, “
2D XFEM-Based Modeling of Retraction and Successive Resections for Pre-Operative Image Update
,”
Comput. Aided Surg.
,
14
(
1–3
), pp.
1
35
.
144.
Cheng
,
Q.
,
Liu
,
P. X.
,
Lai
,
P.
,
Zou
,
Y.
,
Li
,
C.
, and
Hu
,
L.
,
2017
, “
Modelling of Soft Tissue Cutting in Virtual Surgery Simulation: A Literature Review
,”
Int. J. Rob. Autom.
,
32
(
3
).
145.
Vigneron
,
L. M.
,
Verly
,
J. G.
, and
Warfield
,
S. K.
,
2004
, “
Modeling Surgical Cuts, Retractions, and Resections Via Extended Finite Element Method
,”
Medical Image Computing and Computer-Assisted Intervention
(
MICCAI
), Saint-Malo, France, Sept. 26–29, pp.
311
318
.
146.
Remij
,
E. W.
,
Remmers
,
J. J. C.
,
Huyghe
,
J. M.
, and
Smeulders
,
D. M. J.
,
2017
, “
An Investigation of the Step-Wise Propagation of a Mode-II Fracture in a Poroelastic Medium
,”
Mech. Res. Commun.
,
80
, pp.
10
15
.
147.
Koschier
,
D.
,
Bender
,
J.
, and
Thuerey
,
N.
,
2017
, “
Robust eXtended Finite Elements for Complex Cutting of Deformables
,”
ACM Trans. Graph.
,
36
(
4
), p. 55.
148.
Pandolfi
,
A.
, and
Ortiz
,
M.
,
2012
, “
An Eigenerosion Approach to Brittle Fracture
,”
Int. J. Numer. Methods Eng.
,
92
(
8
), pp.
694
714
.
149.
Stochino
,
F.
,
Qinami
,
A.
, and
Kaliske
,
M.
,
2017
, “
Eigenerosion for Static and Dynamic Brittle Fracture
,”
Eng. Fract. Mech.
,
182
, pp.
537
551
.
150.
Miehe
,
C.
,
Welschinger
,
F.
, and
Hofacke
,
R. M.
,
2010
, “
Thermodynamically Consistent Phase-Field Models of Fracture: Variational Principles and Multi-Field Fe Implementations
,”
Int. J. Numer. Methods Eng.
,
83
(
10
), pp.
1273
1311
.
151.
Rabczuk
,
T.
, and
Ren
,
H.
,
2016
, “
A Peridynamics Formulation for Quasi-Static Fracture and Contact in Rock
,”
Eng. Geol.
,
225
, pp.
42
48
.
152.
Zeng
,
W.
,
Johnson
,
B.
,
Smith
,
R.
,
Rubin
,
N.
,
Reagor
,
N.
,
Ryan
,
C.
, and
Rigetti
,
C.
,
2017
, “
First Quantum Computers Need Smart Software
,”
Nature
,
549
(
7671
), pp.
149
151
.
153.
Jin
,
X.
,
Joldes
,
G. R.
,
Miller
,
K.
,
Yang
,
K. H.
, and
Wittek
,
A.
,
2014
, “
Meshless Algorithm for Soft Tissue Cutting in Surgical Simulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
7
), pp.
800
811
.
154.
Horton
,
A.
,
Wittek
,
A.
, and
Miller
,
K.
,
2006
, “
Towards Meshless Methods for Surgical Simulation
,”
Computational Biomechanics for Medicine Workshop
, Copenhagen, Denmark, Oct. 1, pp.
34
42
.https://www.researchgate.net/publication/228851179_Towards_meshless_methods_for_surgical_simulation
155.
Lim
,
Y.-J.
, and
De
,
S.
,
2007
, “
Real Time Simulation of Nonlinear Tissue Response in Virtual Surgery Using the Point Collocation-Based Method of Finite Spheres
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31–32
), pp.
3011
3024
.
156.
Lim
,
Y.-J.
,
Jin
,
W.
, and
De
,
S.
,
2007
, “
On Some Recent Advances in Multimodal Surgery Simulation: Multimodel Surgery Simulation a Hybrid Approach to Surgical Cutting and the Use of Video Images for Enhanced Realism
,”
Presence
,
16
(
6
), pp.
563
583
.
157.
Zou
,
Y.
, and
Liu
,
P. X.
,
2017
, “
A High-Resolution Model for Soft Tissue Deformation Based on Point Primitives
,”
Comput. Methods Programs Biomed.
,
148
, pp.
113
121
.
158.
Kim
,
J.
,
Choi
,
C.
,
De
,
S.
, and
Srinivasan
,
M. A.
,
2007
, “
Virtual Surgery Simulation for Medical Training Using Multi-Resolution Organ Models
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
3
(
2
), pp.
149
158
.
159.
Hung
,
K. W. C.
,
Nakao
,
M.
,
Yoshimura
,
K.
, and
Minato
,
K.
,
2011
, “
Background-Incorporated Volumetric Model for Patient-Specific Surgical Simulation: A Segmentation-Free, Modeling-Free Framework
,”
Int. J. Comput. Assisted Radiol. Surg.
,
6
(
1
), pp.
35
45
.
160.
Nakao
,
M.
,
Oda
,
Y.
,
Taura
,
K.
, and
Minato
,
K.
,
2014
, “
Direct Volume Manipulation for Visualizing Intraoperative Liver Resection Process
,”
Comput. Methods Programs Biomed.
,
113
(
3
), pp.
725
735
.
161.
Pan
,
J. J.
,
Chang
,
J.
,
Yang
,
X.
,
Liang
,
H.
,
Zhang
,
J. J.
,
Qureshi
,
T.
,
Howell
,
R.
, and
Hickish
,
T.
,
2015
, “
Virtual Reality Training and Assessment in Laparoscopic Rectum Surgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
11
(
2
), pp.
194
209
.
162.
Cotin
,
S.
,
Delingette
,
H.
, and
Ayache
,
N.
,
1998
, “
Efficient Linear Elastic Models of Soft Tissues for Real-Time Surgery Simulation
,”
Rapport De Recherche, Institut National De Recherche En Informatique Et En Automatique
, #inria-00073174, INRIA, France, pp.
1
30
.
163.
Cakir
,
O.
, and
Yazici
,
R.
,
2009
, “
Real-Time Cutting Simulation Based on Stiffness-Warped FEM
,”
24th International Symposium on Computer and Information Sciences
(
ISCIS
), Guzelyurt, Cyprus, Sept. 14–16, pp.
721
724
.
164.
Mor
,
A. B.
, and
Kanade
,
T.
,
2000
, “
Modifying Soft Tissue Models: Progressive Cutting With Minimal New Element Creation
,”
Third International Conference on Medical Image Computing and Computer-Assisted Intervention
(
MICCAI
), Pittsburgh, PA, Oct. 11–14, pp.
598
607
.
165.
Wang
,
P.
,
Becker
,
A. A.
,
Jones
,
I. A.
,
Glover
,
A. T.
,
Benford
,
S. D.
,
Greenhalgh
,
C. M.
, and
Vloeberghs
,
M.
,
2006
, “
A Virtual Reality Surgery Simulation of Cutting and Retraction in Neurosurgery With Force-Feedback
,”
Comput. Methods Programs Biomed.
,
84
(
1
), pp.
11
18
.
166.
Lekadir
,
K.
,
Noble
,
C.
,
Hazrati-Marangalou
,
J.
,
Hoogendoorn
,
C.
,
van Rietbergen
,
B.
,
Taylor
,
Z. A.
, and
Frangi
,
A. F.
,
2016
, “
Patient-Specific Biomechanical Modeling of Bone Strength Using Statistically-Derived Fabric Tensors
,”
Ann. Biomed. Eng.
,
44
(
1
), pp.
234
246
.
167.
Alba
,
X.
,
Pereanez
,
M.
,
Hoogendoorn
,
C.
,
Swift
,
A. J.
,
Wild
,
J. M.
,
Frangi
,
A. F.
, and
Lekadir
,
K.
,
2016
, “
An Algorithm for the Segmentation of Highly Abnormal Hearts Using a Generic Statistical Shape Model
,”
IEEE Trans. Med. Imaging
,
35
(
3
), pp.
845
859
.
168.
Sarrami-Foroushani
,
A.
,
Lassila
,
T.
,
Gooya
,
A.
,
Geers
,
A. J.
, and
Frangi
,
A. F.
,
2016
, “
Uncertainty Quantification of Wall Shear Stress in Intracranial Aneurysms Using a Data-Driven Statistical Model of Systemic Blood Flow Variability
,”
J. Biomech.
,
49
(
16
), pp.
3815
382
.
169.
Lekadir
,
K.
,
Lange
,
M.
,
Zimmer
,
V.
,
Hoogendoorn
,
C.
, and
Frangi
,
A. F.
,
2016
, “
Statistically-Driven 3D Fiber Reconstruction and Denoising From Multi-Slice Cardiac DTI Using a Markov Random Field Model
,”
Med. Image Anal.
,
27
, pp.
105
116
.
170.
Chen
,
K. R.
, and
Shih
,
A. J.
,
2013
, “
Multi-Modality Gellan Gum-Based Tissue-Mimicking Phantom With Targeted Mechanical, Electrical, and Thermal Properties
,”
Phys. Med. Biol.
,
58
(
16
), pp.
5511
5525
.
171.
Li
,
W.
,
Belmont
,
B.
, and
Shih
,
A. J.
,
2015
, “
Design and Manufacture of Polyvinyl Chloride (PVC) Tissue Mimicking Material for Needle Insertion
,”
Procedia Manuf.
,
1
, pp.
866
878
.
172.
Qin
,
J.
,
Choi
,
K.-S.
,
Pang
,
W.-M.
,
Yi
,
Z.
, and
Heng
,
P. A.
,
2010
, “
Collaborative Virtual Surgery: Techniques, Applications and Challenges
,”
Int. J. Virtual Reality
,
9
(
3
), pp.
1
7
.http://www.ijvr.org/web/search/singleArticle/34
You do not currently have access to this content.