Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-4 of 4
Keywords: polymerisation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Antonio Completo, Marco Coutinho, Marcelo Schiller, António Ramos, Carlos Relvas, José Simões, Susana Meireles
Journal:
Journal of Medical Devices
Article Type: Design Of Medical Devices Conference Abstracts
J. Med. Devices. June 2011, 5(2): 027503.
Published Online: June 3, 2011
...Antonio Completo; Marco Coutinho; Marcelo Schiller; António Ramos; Carlos Relvas; José Simões; Susana Meireles 01 06 2011 03 06 2011 biomedical materials biothermics bone medical control systems Peltier effect polymerisation prosthetics temperature control To...
Journal Articles
Journal:
Journal of Medical Devices
Article Type: Design Of Medical Devices Conference Abstracts
J. Med. Devices. June 2009, 3(2): 027523.
Published Online: July 8, 2009
... delivery systems hydrogels ionisation laser materials processing manganese mass spectroscopy molecular weight nuclear magnetic resonance pH polymer blends polymer structure polymerisation turbidity 2009 American Society of Mechanical Engineers ...
Abstract
Temperature and pH-sensitive ABC triblock polymers were prepared to form hydrogel membranes capable of changing their structure in response to environmental stimuli, allowing drug release, from a micro implantable device, in short and repetitive pulses. We have previously investigated the capacity of hydrogels to sustain open loop oscillatory behavior, with application in rhythmic hormone release. This novel oscillator is mediated by feedback instability between swelling/shrinking of the hydrogel and an enzyme reaction, whose product modifies pH in the hydrogel. The objective of this work was to prepare and characterize triblock polymer-based hydrogels, to overcome limitations of conventional hydrogels. Our strategy involves reversible arrangement of A and C thermosensitive domains within a strong network, whereas B block is also pH-sensitive. The triblock was mainly based on the use of NIPAAm (N, isopropylacrylamide) and AA (acrylic acid) monomers. Polymers were synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Polymers molecular weight (Mn) and polydispersity index (PDI) were determined by matrix-assisted laser desorption ionization/mass spectrometry (MALDI). Monomers conversion was assessed by NMR and copolymers composition by NMR and pH-titration. Temperature and pH responsiveness was studied by turbidity and light scattering experiments. ABC triblock presented Mn close to 40,000 Da and was nearly monodisperse ( PDI < 1.1 ) . The monomers conversion was 92%, 97% and 39% for A, B and C blocks, respectively. The opposing effects of hydrophobicity and ionization on the aggregation behavior of the diblock have been highlighted through the turbidity and light scattering data. AB diblock cloud points were 32, 34, 35.5 and 37.5 ° C for 3, 5, 10 and 20% of AA, respectively. Micelles or aggegrates were observed depending on pH and temperature. ABC triblock polymers with controlled architecture and Mn distribution were synthesized and fully characterized. The results suggest that these block polymers are promising materials for stimuli-responsive hydrogel membranes applied to medical devices. Work supported by the Swiss National Fund for Scientific Research and an NSF-funded MRSEC (DMR#0819885) at the University of Minnesota.
Journal Articles
Journal:
Journal of Medical Devices
Article Type: Design Of Medical Devices Conference Abstracts
J. Med. Devices. June 2009, 3(2): 027524.
Published Online: July 8, 2009
... nanostructured materials nanotechnology polymerisation polymers proteins purification 2009 American Society of Mechanical Engineers ...
Abstract
Molecular imprinting is a well established technology that mimics biological recognition systems using artificial materials. This involves synthesizing a nanostructured polymeric host in the presence of a target molecule to generate complementary binding sites that are selective for a molecule of interest. The technique offers a platform for developing simple and inexpensive systems with a vast array of applications such as; chromatography, separation, catalysts purification, solid phase extraction, biosensors, medical diagnostics and drug delivery. Elevated levels of some proteins in the blood can lead to a number of medical conditions. Incorporating these polymers into a device for blood purification to remove such molecules can be used as a means to combat these problems. Protein imprinting was studied from a novel perspective using protein coated micro crystals (PCMCs). PCMCs are nanostructured particles made via a rapid 1-step process developed by Moore et al. (2001). The use of a novel PCMCs strategy in molecular imprinting has allowed the retention of selected protein native conformation in organic media and the creation of access pores lined with nanocavities which facilitate protein extraction and re-introduction into the imprinted polymer. This technique has enabled us to overcome many of the challenges faced when using conventional imprinting methodology, such as protein insolubility in aprotic solvents, protein insolubility in aprotic solvents, protein denaturation and aggregation as a result of polymerization conditions and the permanent entrapment of the protein template in the cross linked polymer network.
Journal Articles
Journal:
Journal of Medical Devices
Article Type: Design Of Medical Devices Conference Abstracts
J. Med. Devices. June 2009, 3(2): 027517.
Published Online: July 7, 2009
... ionisation laser materials processing mass spectroscopy membranes nuclear magnetic resonance pH polymer blends polymerisation turbidity 2009 American Society of Mechanical Engineers ...
Abstract
Temperature and pH-sensitive ABC triblock polymers were prepared to form hydrogel membranes capable of changing their structure in response to environmental stimuli, allowing drug release, from a micro implantable device, in short and repetitive pulses. We have previously investigated the capacity of hydrogels to sustain open loop oscillatory behavior, with application in rhythmic hormone release. This novel oscillator is mediated by feedback instability between swelling/shrinking of the hydrogel and an enzyme reaction, whose product modifies pH in the hydrogel. The objective of this work was to prepare and characterize triblock polymer-based hydrogels, to overcome limitations of conventional hydrogels. Our strategy involves reversible arrangement of A and C thermosensitive domains within a strong network, whereas B block is also pH-sensitive. The triblock was mainly based on the use of NIPAAm (N, isopropylacrylamide) and AA (acrylic acid) monomers. Polymers were synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Polymers molecular weight (Mn) and polydispersity index (PDI) were determined by matrix-assisted laser desorption ionization/mass spectrometry (MALDI). Monomers conversion was assessed by NMR and copolymers composition by NMR and pH-titration. Temperature and pH responsiveness was studied by turbidity and light scattering experiments. ABC triblock presented Mn close to 40,000 Da and was nearly monodisperse ( PDI < 1.1 ) . The monomers conversion was 92%, 97% and 39% for A, B and C blocks, respectively. The opposing effects of hydrophobicity and ionization on the aggregation behavior of the diblock have been highlighted through the turbidity and light scattering data. AB diblock cloud points were 32, 34, 35.5 and 37 ° C for 3, 5, 10 and 20% of AA, respectively. Micelles or aggegrates were observed depending on pH and temperature. ABC triblock polymers with controlled architecture and Mn distribution were synthesized and fully characterized. The results suggest that these block polymers are promising materials for stimul-responsive hydrogel membranes applied to medical devices. Work supported by the Swiss National Fund for Scientific Research and an NSF-funded MRSEC (DMR#0819885) at the University of Minnesota.