Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Journal citation
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-2 of 2
Keyword: diffusion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research-Article
J. Med. Devices. June 2013, 7(2): 021004.
Paper No: MED-12-1077
Published Online: June 24, 2013
... changes were analyzed using optical microscopy. The model is then extended to predict spatiotemporal degradation kinetics of variational micropatterned architectures. degradation micropatterned membranes diffusion tissue engineering Tissue engineering aims to regenerate tissue structures...
Abstract
Real-time degradation studies of bioresorbable polymers can take weeks, months, and even years to conduct. For this reason, developing and validating mathematical models that describe and predict degradation can provide a means to accelerate the development of materials and devices for controlled drug release. This study aims to develop and experimentally validate a computer-aided model that simulates the hydrolytic degradation kinetics of bioresorbable polymeric micropatterned membranes for tissue engineering applications. Specifically, the model applies to circumstances that are conducive for the polymer to undergo surface erosion. The developed model provides a simulation tool enabling the prediction and visualization of the dynamic geometry of the degrading membrane. In order to validate the model, micropatterned polymeric membranes were hydrolytically degraded in vitro and the morphological changes were analyzed using optical microscopy. The model is then extended to predict spatiotemporal degradation kinetics of variational micropatterned architectures.
Journal Articles
Article Type: Research Papers
J. Med. Devices. September 2011, 5(3): 031004.
Published Online: August 8, 2011
..., and albumin levels remained uniform throughout treatment. The devised PPPHD unit offers a simple, but efficient strategy of combined simultaneous diffusive and convective solute transport for ESRD patients, without the need for external replacement infusion. 05 05 2011 23 05 2011 08 08...
Abstract
Although hemodiafiltration is presumed to be a gold standard for higher convective therapy for kidney failure patients, the repetition of forward and backward filtration during hemodialysis increases the total filtration volume and convective clearance. Hence, the authors describe a new method of enhancing forward filtration and backfiltration. The devised method, named pulse push/pull hemodialysis (PPPHD), is based on the utilization of dual pulsation in a dialysate stream; namely, pulsatile devices in the dialysate stream both upstream (a dialysate pump) and downstream (an effluent pump) of the dialyzer. Fluid management accuracy of the unit was assessed using fresh bovine blood, and its hemodialytic performance was investigated in a canine renal failure model. Forward filtration rates during PPPHD were maintained at the levels of dialysate flow rates. Fluid balancing error was less than ±0.84% of total dialysate volume, when 97.4 ± 1.66L of pure dialysate was circulated for 4 hs. The animal remained stable without any complication. Urea and creatinine reductions were 56.9 ± 1.6 and 52.8 ± 2.3%, respectively, and albumin levels remained uniform throughout treatment. The devised PPPHD unit offers a simple, but efficient strategy of combined simultaneous diffusive and convective solute transport for ESRD patients, without the need for external replacement infusion.