A novel method to generate uniform biodegradable microspheres for drug delivery applications has been developed. A liquid phase containing the dissolved microsphere matrix material reaches a continuous phase through a silicon membrane with micron-sized perforations, where it forms microdroplets. The solvent diffuses out of the droplets into the continuous phase leading to the formation of solid microspheres. Experiments with poly (lactic-co-glycolic acid) (PLGA) as the matrix material produced microspheres of which 95% had a diameter between 1 and , a smaller size and a narrower size distribution than those reported elsewhere using glass or ceramic membranes. Such microspheres will be useful for the intravascular application and pharmaceutical drug delivery with a slow release of the drug at narrowly defined rates. Drug desorption and biodegradation rates induce controllable drug release from functionalized biodegradable microspheres. Those rates are directly proportional to microsphere size. One problem in conventional methods is how to achieve a desired average size and a narrow size distribution of the microspheres. Using a perforated silicon membrane, the size of the microdroplets mainly depends on the pore size and the speed of the continuous phase. By controlling these two parameters, it will be possible to fabricate monodisperse microspheres. The MEMS based approach to microsphere fabrication provided in this paper allows a better control over microsphere dimensions and therefore better control over drug delivery than those reported elsewhere.
Skip Nav Destination
Article navigation
Design Of Medical Devices Conference Abstracts
On Formation of Uniform Microspheres for Drug Delivery Using a Perforated Silicon Membrane: A Preliminary Study
K-.Y. Song,
K-.Y. Song
University of Saskatchewan
, Saskatoon, SK, Canada
Search for other works by this author on:
U. Häfeli,
U. Häfeli
University of British Columbia
, Vancouver, B.C., Canada
Search for other works by this author on:
K-.Y. Song
University of Saskatchewan
, Saskatoon, SK, Canada
U. Häfeli
University of British Columbia
, Vancouver, B.C., CanadaJ. Med. Devices. Jun 2008, 2(2): 027533 (1 pages)
Published Online: June 18, 2008
Article history
Published:
June 18, 2008
Citation
Song, K., Häfeli, U., Stoeber, B., Chiao, M., and Zhang, W. J. (June 18, 2008). "On Formation of Uniform Microspheres for Drug Delivery Using a Perforated Silicon Membrane: A Preliminary Study." ASME. J. Med. Devices. June 2008; 2(2): 027533. https://doi.org/10.1115/1.2932346
Download citation file:
541
Views
Get Email Alerts
Cited By
Related Articles
Formation of Uniform Microspheres Using a Perforated Silicon Membrane: A Preliminary Study
J. Med. Devices (September,2009)
Stimuli-Responsive Triblock Polymers for Multipulse Drug Delivery
J. Med. Devices (June,2009)
Development of Nanoporous Ultrathin Membranes For Implantable Drug Delivery
J. Med. Devices (June,2008)
Stimuli-Responsive Triblock Polymers for Multipulse Drug Delivery
J. Med. Devices (June,2009)
Related Proceedings Papers
Related Chapters
Conclusions
Chitosan and Its Derivatives as Promising Drug Delivery Carriers
Analytical and Numerical Calculation of Hydrogen Desorption Rate During TDS Analysis Using the Kissinger Formula and the McNabb-Foster Model
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions
Nanomaterials: A brief introduction
Biocompatible Nanomaterials for Targeted and Controlled Delivery of Biomacromolecules