Abstract
This article introduces the design, methods, and use cases of a novel Gravity Augmented Additive Manufacturing (GAAM) approach to Fused Filament Fabrication (FFF) using a novel seven degree of freedom (DoF) delta robotic system. Capable of rotating parts and approaching the workpiece with the deposition head from user-specified or algorithm-determined angles, this system allows users the design freedom to create objects using less support material, while improving the performance of 3D printed components. Not only is time saved by reducing (or eliminating) support material, but components may be able to resist higher loading. Additionally, this system and the methods of operation described below allow users to create objects that are otherwise impossible or impractical to construct using traditional three axis FFF 3D printing, while maintaining compatibility with existing G-code preparation techniques. Finally, this more flexible 3D printing system has advanced applications in generating patient specific objects, which may benefit from more highly specialized toolpaths and design freedom afforded by this system.