Abstract

Neuropathy is a nerve-damaging disease that causes those affected to lose feeling in their otherwise functional limbs. It can cause permanent numbing to the peripheral limb of a patient such as a hand or foot. In this report, we present a real-time visualization aid for grasp realization that can be used by patients experiencing numbness of the limb. This wearable electronic device was developed on an open-source microcontroller-based platform. This is a very simple and inexpensive solution. It is referred to as a NeuroGlove, and it provides patients with a visual light scale to allow them to understand the strength of the grasp they have on any object. A soft tactile sensor was additively manufactured by utilizing a multi-material direct-print system. The sensor consists of an ionic liquid-based pressure-sensitive membrane, stretchable electrodes, and insulation membranes. The printed flexible polymeric sensor was evaluated under varying forces. Next, the fabricated sensor was integrated with a microcontroller board where it was programmed to respond in a light scale according to the applied force on the sensor. Finally, the sensor-microcontroller system was installed on a glove to demonstrate a wearable visual aid for neuropathy patients. Additive manufacturing offers the ability for customization in a design, material, and geometry that could potentially lead to printing sensors on prosthetic or robotic hands.

This content is only available via PDF.
You do not currently have access to this content.