Abstract

Mechanical circulatory support (MCS) devices, i.e. ventricular assist devices (VADs) and total artificial hearts (TAHs), while effective and vital in restoring hemodynamics in patients with circulatory compromise in advanced heart failure, remain limited by significant adverse thrombotic, embolic and bleeding events. Many of these complications relate to chronic exposure, via these devices, to non-pulsatile flow and the high shear stress created by current methods of blood propulsion or use of prosthetic valves. Here we propose a novel non-compressing single sliding vane MCS device to: 1) dramatically reduce pump operating speed thus potentially lowering the shear stress imparted to blood; 2) eliminate utilization of prosthetic valves thus diminishing potential shear stress generations; 3) allow direct flowrate control to generate physically desired blood flowrate include pulsatile flow; and 4) achieve compactness to fit into the majority of patients. The fundamental working principle and governing design equations are introduced first with multiple design and performance objectives presented. A first prototype was fabricated and experimental tests were conducted to validate the model with a 93% match between theoretical and experimental flowrate results. After model validation, the proposed MCS was tested to illustrate the ability of pulsatile flow generation. Finally, it was compared with some representative MCS pumps to discuss its potential of improving current MCS design. The presented work offers a novel MCS design and paves the way for next steps in device hemocompatibility testing.

This content is only available via PDF.
You do not currently have access to this content.