Pervasive detection of blood glucose is rather critical for the real-time disease diagnosis which would provide valuable guidance for treatment planning. Here, we established a health care platform for this purpose through incorporating the glucose detection with liquid metal printed sensor and the smart phone monitoring system together. The liquid metal ink composed of bismuth indium stannic (BIS) alloy was identified as an appropriate sensor material to be quickly written or printed on polyvinyl chloride (PVC) substrate at around 59 °C to form desired electrodes. It thus eliminated the complicated procedures as usually required in conventional sensor fabrication strategies. The alloy electrodes were characterized via cyclic voltammetry to demonstrate their practical functionality. Further, unlike using the commonly adopted glucometer, a smart phone was developed as the data acquisition and display center to help improve the portability and ubiquitous virtue of the detection system. Glucose solution in different concentrations was assayed via this platform. It was shown that there is a good linear relationship between the concentration and the integral value of the curve recorded by the mobile phone, which confirms the feasibility of the present method. This quantitative point-of-care system has pervasive feature and is expected to be very useful for future low-cost electrochemical detection.

References

References
1.
Bruzewicz
,
D. A.
,
Reches
,
M.
, and
Whitesides
,
G. M.
,
2008
, “
Low-Cost Printing of PDMS Barriers to Define Microchannels in Paper
,”
Anal. Chem.
,
80
(
9
), pp.
3387
3392
.
2.
Martinez
,
A. W.
,
Phillips
,
S. T.
, and
Whitesides
,
G. M.
,
2010
, “
Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices
,”
Anal. Chem.
,
82
(
1
), pp.
3
10
.
3.
Martinez
,
A. W.
,
Phillips
,
S. T.
,
Butte
,
M. J.
, and
Whitesides
,
G. M.
,
2007
, “
Portable Bioassays
,”
Angew. Chem., Int. Ed. Engl.
,
46
(
8
), pp.
1318
1320
.
4.
Martinez
,
A. W.
,
Phillips
,
S. T.
,
Carrilho
,
E.
,
Thomas
,
S. W.
,
Sindi
,
H.
, and
Whitesides
,
G. M.
,
2008
, “
Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis
,”
Anal. Chem.
,
80
(
10
), pp.
3699
3707
.
5.
Ellerbee
,
A. K.
,
Phillips
,
S. T.
,
Siegel
,
A. C.
,
Mirica
,
K. A.
,
Martinez
,
A. W.
,
Striehl
,
P.
,
Jain
,
N.
,
Prentiss
,
M.
, and
Whitesides
,
G. M.
,
2009
, “
Quantifying Colorimetric Assays in Paper-Based Microfluidic Devices by Measuring the Transmission of Light Through Paper
,”
Anal. Chem.
,
81
(
20
), pp.
8447
8452
.
6.
Lee
,
D. S.
,
Jeon
,
B. G.
,
Ihm
,
C.
,
Park
,
J. K.
, and
Jung
,
M. Y.
,
2011
, “
A Simple and Smart Telemedicine Device for Developing Regions: A Pocket-Sized Colorimetric Reader
,”
Lab Chip
,
11
(
1
), pp.
120
126
.
7.
Dantu
,
V.
,
Vempati
,
J.
, and
Srivilliputhur
,
S.
,
2014
, “
Non-Invasive Blood Glucose Monitor Based on Spectroscopy Using a Smartphone
,”
Annual International Conference of the
IEEE
Engineering in Medicine and Biology Society,
Chicago, IL
, Aug. 26–29, pp.
3695
3698
.
8.
Chun
,
H. J.
,
Park
,
Y. M.
,
Yong
,
D. H.
,
Jang
,
Y. H.
, and
Yoon
,
H. C.
,
2014
, “
Paper-Based Glucose Biosensing System Utilizing a Smartphone as a Signal Reader
,”
BioChip J.
,
8
(
3
), pp.
218
226
.
9.
Martinez
,
A. W.
,
Phillips
,
S. T.
,
Carrilho
,
E.
,
Thomas
,
S. W.
,
Sindi
,
H.
, and
Whitesides
,
G. M.
,
2008
, “
Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis
,”
Anal. Chem.
,
80
(
10
), pp.
3699
3707
.
10.
Huang
,
Y. W.
, and
Ugaz
,
V. M.
,
2013
, “
Smartphone-Based Detection of Unlabeled DNA Via Electrochemical Dissolution
,”
Analyst
,
138
(
9
), pp.
2522
2526
.
11.
Wang
,
J.
,
2006
, “
Electrochemical Biosensors: Towards Point-of-Care Cancer Diagnostics
,”
Biosens. Bioelectron.
,
21
(
10
), pp.
1887
1892
.
12.
Dungchai
,
W.
,
Chailapakul
,
O.
, and
Henry
,
C. S.
,
2009
, “
Electrochemical Detection for Paper-Based Microfluidics
,”
Anal. Chem.
,
81
(
14
), pp.
5821
5826
.
13.
Nie
,
Z.
,
Nijhuis
,
C. A.
,
Gong
,
J.
,
Chen
,
X.
,
Kumachev
,
A.
,
Martinez
,
A. W.
,
Narovlyansky
,
M.
, and
Whitesides
,
G. M.
,
2010
, “
Electrochemical Sensing in Paper-Based Microfluidic Devices
,”
Lab Chip
,
10
(
4
), pp.
477
483
.
14.
Ahn
,
C. H.
,
Choi
,
J. W.
,
Beaucage
,
G.
,
Nevin
,
J. H.
,
Lee
,
J. B.
,
Puntambekar
,
A.
, and
Lee
,
J. Y.
,
2004
, “
Disposable Smart Lab on a Chip for Point-of-Care Clinical Diagnostics
,”
Proc. IEEE
,
92
(
1
), pp.
154
173
.
15.
Sia
,
S. K.
,
Linder
,
V.
,
Parviz
,
B. A.
,
Siegel
,
A.
, and
Whitesides
,
G. M.
,
2004
, “
An Integrated Approach to a Portable and Low-Cost Immunoassay for Resource-Poor Settings
,”
Angew. Chem., Int. Ed.
,
43
(
4
), pp.
498
502
.
16.
Soper
,
S. A.
,
Brown
,
K.
,
Ellington
,
A.
,
Frazier
,
B.
,
Garcia-Manero
,
G.
,
Gau
,
V.
,
Gutman
,
S. I.
,
Hayes
,
D. F.
,
Korte
,
B.
,
Landers
,
J. L.
,
Larson
,
D.
,
Ligler
,
F.
,
Majumdar
,
A.
,
Mascini
,
M.
,
Nolte
,
D.
,
Rosenzweig
,
Z.
,
Wang
,
J.
, and
Wilson
,
D.
,
2006
, “
Point-of-Care Biosensor Systems for Cancer Diagnostics/Prognostics
,”
Biosens. Bioelectron.
,
21
(
10
), pp.
1932
1942
.
17.
Dittrich
,
P. S.
,
Tachikawa
,
K.
, and
Manz
,
A.
,
2006
, “
Micro Total Analysis Systems: Latest Advancements and Trends
,”
Anal. Chem.
,
78
(
12
), pp.
3887
3907
.
18.
Cho
,
Y. K.
,
Lee
,
J. G.
,
Park
,
J. M.
,
Lee
,
B. S.
,
Lee
,
Y.
, and
Ko
,
C.
,
2007
, “
One-Step Pathogen Specific DNA Extraction From Whole Blood on a Centrifugal Microfluidic Device
,”
Lab Chip
,
7
(
5
), pp.
565
573
.
19.
Haun
,
J. B.
,
Castro
,
C. M.
,
Wang
,
R.
,
Peterson
,
V. M.
,
Marinelli
,
B. S.
,
Lee
,
H.
, and
Weissleder
,
R.
,
2011
, “
Micro-NMR for Rapid Molecular Analysis of Human Tumor Samples
,”
Sci. Transl. Med.
,
3
(
71
), pp.
1
13
.
20.
Liu
,
J.
,
Yu
,
Y.
, and
Liu
,
L.
,
2011
,
Biomedical Engineering on a Mobile Phone
,
Science Press
,
Beijing
, pp.
1
30
.
21.
Lillehoj
,
P. B.
,
Huang
,
M. C.
, and
Ho
,
C. M.
,
2013
, “
A Handheld, Cell Phone-Based Electrochemical Biodetector
,”
IEEE
26th International Conference on MEMS
,
Taipei, Taiwan
, June 20–24, pp.
53
56
.
22.
Lillehoj
,
P. B.
,
Huang
,
M. C.
,
Truong
,
N.
, and
Ho
,
C. M.
,
2013
, “
Rapid Electrochemical Detection on a Mobile Phone
,”
Lab Chip
,
13
(
15
), pp.
2950
2955
.
23.
Sun
,
A.
,
Wambach
,
T.
,
Venkatesh
,
A. G.
, and
Hall
,
W.
,
2014
, “
A Low-Cost Smartphone-Based Electrochemical Biosensor for Point-of-Care Diagnostics
,”
IEEE Biomedical Circuits and Systems Conference
(
BioCAS
),
Lausanne, Switzerland
, Oct. 22–24, pp.
312
315
.
24.
Gao
,
Y.
,
Li
,
H.
, and
Liu
,
J.
,
2012
, “
Direct Writing of Flexible Electronics Through Room Temperature Liquid Metal Ink
,”
PLoS One
,
7
(
9
), p.
e45485
.
25.
Wang
,
L.
, and
Liu
,
J.
,
2014
, “
Liquid Phase 3D Printing for Quickly Manufacturing Conductive Metal Objects With Low Melting Point Alloy Ink
,”
Sci. China: Technol. Sci.
,
57
(
9
), pp.
1721
1728
.
26.
Zhou
,
J.
,
Sun
,
Y.
, and
Xue
,
F.
,
2005
, “
Properties of Low Melting Point Sn-Zn-Bi Solders
,”
J. Alloys Compd.
,
397
(
1–2
), pp.
260
264
.
27.
Whitesides
,
G. M.
,
2004
, “
Whitesides' Group: Writing a Paper
,”
Adv. Mater.
,
16
(
15
), pp.
1375
1377
.
28.
Russo
,
A.
,
Ahn
,
B. Y.
,
Adams
,
J. J.
,
Duoss
,
E. B.
,
Bernhard
,
J. T.
, and
Lewis
,
J. A.
,
2011
, “
Pen-on-Paper Flexible Electronics
,”
Adv. Mater.
,
23
(
30
), pp.
3426
3430
.
29.
Martinez
,
A. W.
,
Phillips
,
S. T.
,
Wiley
,
B. J.
,
Gupta
,
M.
, and
Whitesides
,
G. M.
,
2008
, “
FLASH: A Rapid Method for Prototyping Paper-Based Microfluidic Devices
,”
Lab Chip
,
8
(
12
), pp.
2146
2150
.
30.
Apilux
,
A.
,
Dungchai
,
W.
,
Siangproh
,
W.
,
Praphairaksit
,
N.
,
Henry
,
C. S.
, and
Chailapakul
,
O.
,
2010
, “
Lab-on-Paper With Dual Electrochemical/Colorimetric Detection for Simultaneous Determination of Gold and Iron
,”
Anal. Chem.
,
82
(
5
), pp.
1727
1732
.
31.
Yeh
,
J. T. C.
,
1982
, “
Characterization of In-Based Eutectic Alloys Used in Josephson Packaging
,”
Metall. Trans. A
,
13
(
9
), pp.
1547
1562
.
32.
Nie
,
Z.
,
Deiss
,
F.
,
Liu
,
X.
,
Akbulut
,
O.
, and
Whitesides
,
G. M.
,
2010
, “
Integration of Paper-Based Microfluidic Devices With Commercial Electrochemical Readers
,”
Lab Chip
,
10
(
22
), pp.
3163
3169
.
You do not currently have access to this content.