Robotic minimally invasive surgery (R-MIS) has achieved success in various procedures; however, the lack of haptic feedback is considered by some to be a limiting factor. The typical method to acquire tool–tissue reaction forces is attaching force sensors on surgical tools, but this complicates sterilization and makes the tool bulky. This paper explores the feasibility of using motor current to estimate tool-tissue forces and demonstrates acceptable results in terms of time delay and accuracy. This sensorless force estimation method sheds new light on the possibility of equipping existing robotic surgical systems with haptic interfaces that require no sensors and are compatible with existing sterilization methods.
Issue Section:
Research Papers
Topics:
Biological tissues,
Cables,
Engineering prototypes,
Motors,
Sensors,
Surgery,
Yaw,
Errors,
Delays,
Haptics,
Force measurement,
Robotics,
Surgical tools
References
1.
Intuitive Surgical
, 2014
, “Clinical Evidence
,” Intuitive Surgical, Inc., Sunnyvale, CA, accessed June 10, 2014, http://www.davincisurgery.com/facts/.2.
Okamura
, A. M.
, 2009
, “Haptic Feedback in Robot-Assisted Minimally Invasive Surgery
,” Curr. Opin. Urol.
, 19
(1
), pp. 102
–107
.3.
Puangmali
, P.
, Althoefer
, K.
, Seneviratne
, L. D.
, Murphy
, D.
, and Dasgupta
, P.
, “State-of-the-Art in Force and Tactile Sensing for Minimally Invasive Surgery
,” IEEE Sens. J.
, 8
(4
), pp. 371
–381
.4.
Fischer
, G. S.
, Akinbiyi
, T.
, Saha
, S.
, Zand
, J.
, Talamini
, M.
, Marohn
, M.
, and Taylor
, R.
, 2006
, “Ischemia and Force Sensing Surgical Instruments for Augmenting Available Surgeon Information
,” 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(BioRob 2006
), Pisa, Italy, Feb. 20–22, pp. 1030
–1035
.5.
Hammond
, F. L.
, Smith
, M. J.
, and Wood
, R. J.
, 2014
, “Printing Strain Gauges on Surgical Instruments for Force Measurement
,” ASME J. Med. Devices
, 8
(3
), p. 030935
.6.
Menciassi
, A.
, Eisinberg
, A.
, Carrozza
, M. C.
, and Dario
, P.
, 2003
, “Force Sensing Microinstrument for Measuring Tissue Properties and Pulse in Microsurgery
,” IEEE/ASME Trans. Mechatron.
, 8
(1
), pp. 10
–17
.7.
Gafford
, G. B.
, Kesner
, S.
, Wood
, R.
, and Walsh
, C.
, 2013
, “Force-Sensing Surgical Grasper Enabled by Pop-Up Book MEMS
,” IEEE International Conference on Intelligent Robots and Systems
(IROS
), Tokyo, Nov. 3–7, pp. 2552
–2558
.8.
Payne
, C.
, Tari
, H.
, Marcus
, H.
, and Yang
, G.
, 2014
, “Hand-Held Microsurgical Forceps with Force-Feedback for Micromanipulation
,” IEEE International Conference on Robotics and Automation
(ICRA
), Hong Kong, May 31–June 7, pp. 284
–289
.9.
Sokhanvar
, S.
, Packirisamy
, M.
, and Dargahi
, J.
, 2007
, “A Multifunctional PVDF-Based Tactile Sensor for Minimally Invasive Surgery
,” Smart Mater. Struct.
, 16
(4
), pp. 989
–998
.10.
Dargahi
, J.
, Parameswaran
, M.
, and Payandeh
, S.
, 2000
, “A Micromachined Piezoelectric Tactile Sensor for an Endoscopic Grasper-Theory, Fabrication and Experiments
,” Microelectromech. Syst.
, 9
(3
), pp. 329
–335
.11.
Ottermo
, M. V.
, Stavdahl
, O.
, and Johansen
, T. A.
, 2004
, “Palpation Instrument for Augmented Minimally Invasive Surgery
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2004
), Sendai, Japan, Sept. 28–Oct. 2, pp. 3960
–3964
.12.
Seibold
, U.
, Kubler
, B.
, and Hirzinger
, G.
, 2005
, “Prototype of Instrument for Minimally Invasive Surgery With 6-Axis Force Sensing Capability
,” IEEE International Conference on Robotics and Automation
(ICRA 2005
), Barcelona, Spain, Apr. 18–22, pp. 18
–22
.13.
Kubler
, B.
, Seibold
, U.
, and Hirzinger
, G.
, 2005
, “Development of Actuated and Sensor Integrated Forceps for Minimally Invasive Robotic Surgery
,” Int. J. Med. Rob. Comput. Assisted Surg.
, 1
(3
), pp. 96
–107
.14.
Mayer
, H.
, Gomez
, F.
, Wierstra
, D.
, Nagy
, I.
, Knoll
, A.
, and Schmidhuber
, J.
, 2006
, “A System for Robotic Heart Surgery That Learns to Tie Knots Using Recurrent Neural Networks
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS
), Beijing, Oct. 9–15, pp. 543
–548
.15.
Li
, X.
, 2001
, “Real-Time Prediction of Work Piece Errors for a CNC Turning Center, Part 3. Cutting Force Estimation Using Current Sensors
,” Int. J. Adv. Manuf. Technol.
, 17
(9
), pp. 659
–664
.16.
Jeong
, Y. H.
, and Cho
, D. W.
, 2002
, “Estimating Cutting Force From Rotating and Stationary Feed Motor Currents on a Milling Machine
,” Int. J. Mach. Tools Manuf.
, 42
(14
), pp. 1559
–1566
.17.
Tholey
, G.
, Pillarisetti
, A.
, Green
, W.
, and Desai
, J. P.
, 2004
, “Design, Development, and Testing of an Automated Laparoscopic Grasper With 3-D Force Measurement Capability
,” International Symposium on Medical Simulation
(ISMS 2004
), Cambridge, MA, June 17–18, pp. 38
–48
.18.
Zhao
, B.
, and Nelson
, C.
, 2013
, “Decoupled Cable-Driven Grasper Design Based on Planetary Gear Theory
,” ASME J. Med. Device.
, 7
(2
), p. 020918
.19.
Zhao
, B.
, and Nelson
, C.
, 2014
, “A Cable-Driven Grasper With Decoupled Motion and Forces
,” ASME J. Med. Devices
, 8
(3
), p. 030922
.20.
Zhao
, B.
, and Nelson
, C.
, 2015
, “Sensorless Force Estimation for a 3-DOF Motorized Surgical Grasper
,” ASME Design of Medical Devices Conference
, Minneapolis, MN, Apr. 13–16, ASME
Paper No. DMD 2015–8654.21.
Bhagat
, N. A.
, 2011
, “Sensing and Cancellation of Tremors in Surgeon's Hands During Microsurgery
,” MS thesis, Indian Institute of Technology, Bombay.22.
Sengul.
, A.
, Rivest
, F.
, Elk
, M. V.
, Blanke
, O.
, and Bleuler
, H.
, 2013
, “Visual and Force Feedback Time-Delays Change Telepresence: Quantitative Evidence From Crossmodal Congruency Task
,” World Haptics Conference
(WHC
), Daejeon, Korea, Apr. 14–17, pp. 577
–582
.23.
Kuchenbecker
, K. J.
, and Culbertson
, H.
, 2014
, “Haptic Rendering of Textures
,” 2014 IEEE Haptics Symposium
, Houston, TX Feb. 23–26.24.
Johansson
, R. S.
, and Flanagan
, J. R.
, 2009
, “Coding and Use of Tactile Signals from the Fingertips in Object Manipulation Tasks
,” Nat. Rev. Neurosci.
10
(5
), pp. 345
–359
.25.
Lum
, M. J.
, Trimble
, D.
, and Rosen
, J.
, 2006
, “Multidisciplinary Approach for Developing a New Minimally Invasive Surgical Robotic System
,” 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(BioRob 2006
), Pisa, Italy, Feb. 20–22, pp. 841
–846
.26.
Reiley
, C. E.
, Akinbiyi
, T.
, Burschka
, D.
, Chang
, D. C.
, Okamura
, A. M.
, and Yuh
, D. D.
, 2008
, “Effects of Visual Force Feedback on Robot-Assisted Surgical Task Performance
,” J. Thoracic Cardiovasc. Surg.
, 135
(1
), pp. 196
–202
.27.
Markvicka
, J. M.
, 2014
, “Design and Development of a Miniature In Vivo Surgical Robot With Distributed Motor Control for Laparoscopic Single-Site Surgery
,” MS thesis, University of Nebraska–Lincoln, Lincoln, NE.Copyright © 2015 by ASME
You do not currently have access to this content.