Temperature distribution monitoring in tissue undergoing laser ablation (LA) could be beneficial for improving treatment outcomes. Among several thermometric techniques employed in LA, fiber Bragg grating (FBG) sensors show valuable characteristics, although their sensitivity to strain entails measurement error for patient respiratory movements. Our work describes a solution to overcome this issue by housing an FBG in a surgical needle. The metrological properties of the probes were assessed in terms of thermal sensitivity (0.027 nm °C−1 versus 0.010 nm °C−1 for epoxy liquid encapsulated probe and thermal paste one, respectively) and response time (about 100 ms) and compared with properties of nonencapsulated FBG (sensitivity of 0.010 nm °C−1, response time of 43 ms). The error due to the strain caused by liver movements, simulating a typical respiratory pattern, was assessed: the strain induces a probes output error less than 0.5 °C, which is negligible when compared to the response of nonencapsulated FBG (2.5 °C). The metallic needle entails a measurement error, called artifact, due to direct absorption of the laser radiation. The analysis of the artifact was performed by employing the probes for temperature monitoring on liver undergoing LA. Experiments were performed at two laser powers (i.e., 2 W and 4 W) and at nine distances between the probes and the laser applicator. The artifact decreases with the distance and increases with the power: it exceeds 10 °C at 4 W, when the encapsulated probes are placed at 3.6 mm and 0 deg from the applicator, and it is lower than 1 °C for distance higher than 5 mm and angle higher than 30 deg.

References

References
1.
Bruggmoser
,
G.
,
2012
, “
Some Aspects of Quality Management in Deep Regional Hyperthermia
,”
Int. J. Hyperthermia
,
28
(
6
), pp.
562
569
.
2.
Myerson
,
R. J.
,
Moros
,
E. G.
,
Diederich
,
C. J.
,
Haemmerich
,
D.
,
Hurwitz
,
M. D.
,
Hsu
,
I.-C. J.
,
McGough
,
R. J.
,
Nau
,
W. H.
,
Straube
,
W. L.
,
Turner
,
P. F.
,
Vujaskovic
,
Z.
, and
Stauffer
,
P. R.
,
2014
, “
Components of a Hyperthermia Clinic: Recommendations for Staffing, Equipment, and Treatment Monitoring
,”
Int. J. Hyperthermia
,
30
(
1
), pp.
1
5
.
3.
Paulides
,
M. M.
,
Stauffer
,
P. R.
,
Neufeld
,
E.
,
Maccarini
,
P. F.
,
Kyriakou
,
A.
,
Canters
,
R. A.
,
Canters
,
R. A. M.
,
Diederich
,
C. J.
,
Bakker
,
J. F.
, and
Van Rhoon
,
G. C.
,
2013
, “
Simulation Techniques in Hyperthermia Treatment Planning
,”
Int. J. Hyperthermia
,
29
(
4
), pp.
346
357
.
4.
Saccomandi
,
P.
,
Schena
,
E.
, and
Silvestri
,
S.
,
2013
, “
Techniques for Temperature Monitoring During Laser-Induced Thermotherapy: An Overview
,”
Int. J. Hyperthermia
,
29
(
7
), pp.
609
619
.
5.
Hübner
,
F.
,
Bazrafshan
,
B.
,
Roland
,
J.
,
Kickhefel
,
A.
, and
Vogl
,
T. J.
,
2013
, “
The Influence of Nd:YAG Laser Irradiation on Fluoroptic® Temperature Measurement: An Experimental Evaluation
,”
Lasers Med. Sci.
,
28
(
2
), pp.
487
496
.
6.
Patterson
,
M. P.
,
Riley
,
C. B.
,
Kolios
,
M. C.
, and
Whelan
,
W. M.
,
2011
, “
Optoacoustic Signal Amplitude and Frequency Spectrum Analysis Laser Heated Bovine Liver Ex Vivo
,”
IEEE International Ultrasonics Symposium (
IUS
), Orlando, FL, Oct. 18–21, pp.
300
303
.
7.
Saccomandi
,
P.
,
Schena
,
E.
,
Caponero
,
M. A.
,
Di Matteo
,
F. M.
,
Martino
,
M.
,
Pandolfi
,
M.
, and
Silvestri
,
S.
,
2012
, “
Theoretical Analysis and Experimental Evaluation of Laser-Induced Interstitial Thermotherapy in Ex Vivo Porcine Pancreas
,”
IEEE Trans. Biomed. Eng.
,
59
(
10
), pp.
2958
2964
.
8.
Saccomandi
,
P.
,
Schena
,
E.
,
Giurazza
,
F.
,
Del Vescovo
,
R.
,
Caponero
,
M. A.
,
Mortato
,
L.
,
Panzera
,
F.
,
Cazzato
,
R. L.
,
Grasso
,
F. R.
,
Di Matteo
,
F. M.
,
Silvestri
,
S.
, and
Beomonte Zobel
,
B.
,
2014
, “
Temperature Monitoring and Lesion Volume Estimation During Double-Applicator Laser-Induced Thermotherapy in Ex Vivo Swine Pancreas: A Preliminary Study
,”
Lasers Med. Sci.
,
29
(
2
), pp.
607
614
.
9.
Bazrafshan
,
B.
,
Hübner
,
F.
,
Farshid
,
P.
,
Hammerstingl
,
R.
,
Paul
,
J.
,
Vogel
,
V.
,
Mäntele
,
W.
, and
Vogl
,
T. J.
,
2014
, “
Temperature Imaging of Laser-Induced Thermotherapy (LITT) by MRI: Evaluation of Different Sequences in Phantom
,”
Lasers Med. Sci.
,
29
(
1
), pp.
173
183
.
10.
Schena
,
E.
,
Saccomandi
,
P.
,
Giurazza
,
F.
,
Caponero
,
M. A.
,
Mortato
,
L.
,
Di Matteo
,
F. M.
,
Panzera
,
F.
,
Del Vescovo
,
R.
,
Beomonte Zobel
,
B.
, and
Silvestri
,
S.
,
2013
, “
Experimental Assessment of CT-Based Thermometry During Laser Ablation of Porcine Pancreas
,”
Phys. Med. Biol.
,
58
(
16
), pp.
5705
5716
.
11.
Bruners
,
P.
,
Pandeya
,
G. D.
,
Levit
,
E.
,
Roesch
,
E.
,
Penzkofer
,
T.
,
Isfort
,
P.
,
Schmidt
,
B.
,
Greuter
,
M. J. W.
,
Oudkerk
,
M.
,
Schmitz-Rode
,
T.
,
Kuhl
,
C. K.
, and
Mahnken
,
A. H.
,
2012
, “
CT-Based Temperature Monitoring During Hepatic RF Ablation: Feasibility in an Animal Model
,”
Int. J. Hyperthermia
,
28
(
1
), pp.
55
61
.
12.
Pandeya
,
G. D.
,
Greuter
,
M. G. V.
,
Schimdt
,
B.
,
Flohr
,
T.
, and
Oudkerk
,
M.
,
2012
, “
Assessment of Thermal Sensitivity of CT During Heating of Liver: An Ex Vivo Study
,”
Br. J. Radiol.
,
85
(
1017
), pp.
e661
e665
.
13.
Fani
,
F.
,
Schena
,
E.
,
Saccomandi
,
P.
, and
Silvestri
,
S.
,
2014
, “
CT-Based Thermometry: An Overview
,”
Int. J. Hyperthermia
,
30
(
4
), pp.
219
227
.
14.
Taffoni
,
F.
,
Formica
,
D.
,
Saccomandi
,
P.
,
Di Pino
,
G.
, and
Schena
,
E.
,
2013
, “
Optical Fiber-Based MR-Compatible Sensors for Medical Applications: An Overview
,”
Sensors
,
13
(
10
), pp.
14105
14120
.
15.
Mishra
,
V.
,
Singh
,
N.
,
Tiwari
,
U.
, and
Kapur
,
P.
,
2011
, “
Fiber Grating Sensors in Medicine: Current and Emerging Applications
,”
Sens. Actuators, A
,
167
(
2
), pp.
279
290
.
16.
Park
,
Y. L.
,
Ryu
,
S. C.
,
Black
,
R. J.
,
Chau
,
K. K.
,
Moslehi
,
B.
, and
Cutkosky
,
M. R.
,
2009
, “
Exoskeletal Force-Sensing End-Effectors With Embedded Optical Fiber-Bragg-Grating Sensors
,”
IEEE Trans. Rob.
,
25
(
6
), pp.
1319
1331
.
17.
Bocherens
,
E.
,
Bourasseau
,
S.
,
Dewynter-Marty
,
V.
,
Py
,
S.
,
Dupont
,
M.
,
Ferdinand
,
P.
, and
Berenger
,
H.
,
2000
, “
Damage Detection in a Radome Sandwich Material With Embedded Fiber Optic Sensors
,”
Smart Mater. Struct.
,
9
(
3
), pp.
310
315
.
18.
Webb
,
D. J.
,
Jones
,
S.
,
Zhang
,
L.
,
Bennion
,
I.
,
Hathaway
,
M. W.
, and
Jackson
,
D. A.
,
2000
, “
First In Vivo Trials of a Fiber Bragg Grating Based Temperature Profiling System
,”
J. Biomed. Opt.
,
5
(
1
), pp.
45
50
.
19.
Li
,
C.
,
Chen
,
N.
,
Chen
,
Z.
, and
Wang
,
T.
,
2009
, “
Fully Distributed Chirped FBG Sensor and Application in Laser-Induced Interstitial Thermotherapy
,”
Asia Communications and Photonics Conference
(ACP), Shanghai, Nov. 2–6, p.
76340D
.
20.
Samset
,
E.
,
Mala
,
T.
,
Ellingsen
,
R.
,
Gladhaug
,
I.
,
Søreide
,
O.
, and
Fosse
,
E.
,
2001
, “
Temperature Measurement in Soft Tissue Using a Distributed Fibre Bragg-Grating Sensor System
,”
Minimally Invasive Ther. Allied Technol.
,
10
(
2
), pp.
89
93
.
21.
Tosi
,
D.
,
Macchi
,
E. G.
,
Braschi
,
G.
,
Gallati
,
M.
,
Cigada
,
A.
,
Poeggel
,
S.
,
Leen
,
G.
, and
Lewis
,
E.
,
2014
, “
Monitoring of Radiofrequency Thermal Ablation in Liver Tissue Through Fibre Bragg Grating Sensors Array
,”
Electron. Lett.
,
50
(
14
), pp.
981
983
.
22.
Zhou
,
Z.
, and
Ou
,
J.
,
2005
, “
Development of FBG Sensors for Structural Health Monitoring in Civil Infrastructures
,”
Sensing Issues in Civil Structural Health Monitoring
,
Springer
,
Dordrecht
, pp.
197
207
.
23.
Zhou
,
Z.
,
Graver
,
T. W.
,
Hsu
,
L.
, and
Ou
,
J. P.
,
2003
, “
Techniques of Advanced FBG Sensors: Fabrication, Demodulation, Encapsulation and Their Application in the Structural Health Monitoring of Bridges
,”
Pac. Sci. Rev.
,
5
(
1
), pp.
116
121
.
24.
Frich
,
L.
,
2006
, “
Non-Invasive Thermometry for Monitoring Hepatic Radiofrequency Ablation
,”
Minimally Invasive Ther. Allied Technol.
,
15
(
1
), pp.
18
25
.
25.
Manns
,
F.
,
Milne
,
P. J.
,
Gonzalez-Chirre
,
X.
,
Denham
,
D. B.
,
Parel
,
J. M.
, and
Robinson
,
D. S.
,
1998
, “
In Situ Temperature Measurements With Thermocouple Probes During Laser Interstitial Thermotherapy (LITT): Quantification and Correction of a Measurement Artifact
,”
Lasers Med. Sci.
,
23
(
2
), pp.
94
103
.
26.
Cain
,
P.
, and
Welch
,
A. J.
,
1974
, “
Thin-Film Temperature Sensors for Biological Measurements
,”
IEEE Trans. Biomed. Eng.
,
21
(
5
), pp.
421
423
.
27.
van Nimwegen
,
S. A.
,
L'Eplattenier
,
H. F.
,
Rem
,
A. I.
,
van der Lugt
,
J. J.
, and
Kirpensteijn
,
J.
,
2009
, “
Nd:YAG Surgical Laser Effects in Canine Prostate Tissue: Temperature and Damage Distribution
,”
Phys. Med. Biol.
,
54
(
1
), pp.
29
44
.
28.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2011
, “
Measurement System Behavior
,”
Theory and Design of Mechanical Measurements
,
5th ed.
,
Wiley, Hoboken, NJ
, pp.
85
92
.
29.
Langen
,
K. M.
, and
Jones
,
D. T. L.
,
2001
, “
Organ Motion and Its Management
,”
Int. J. Radiat. Oncol.
,
50
(
1
), pp.
265
278
.
30.
JCGM Working Group 1, 2008, “Guide to the Expression of Uncertainty in Measurement,” Joint Committee for Guides in Metrology, Document No. JCGM 100,
2008
, available at: http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
31.
Anvari
,
B.
,
Motamedi
,
M.
,
Torres
,
J. H.
,
Rastegar
,
S.
, and
Orihuela
,
E.
,
1994
, “
Effects of Surface Irrigation on the Thermal Response of Tissue During Laser Irradiation
,”
Lasers Surg. Med.
,
14
(
4
), pp.
386
395
.
32.
Schena
,
E.
, and
Majocchi
,
L.
,
2014
, “
Assessment of Temperature Measurement Error and Its Correction During Nd:YAG Laser Ablation in Porcine Pancreas
,”
Int. J. Hyperthermia
,
30
(
5
), pp.
328
334
.
You do not currently have access to this content.