Flexible needles with enhanced steerability are desired in minimally invasive surgeries to reach target locations precisely and to bypass critical organs lying in the planned path. We have proposed a flexure-based active needle that enhances steerability by using a flexure element near the needle tip. Needle curvature is controlled by attached shape memory alloy (SMA) wires that apply actuator forces to bend the needle. Using actuator forces rather than axial rotation to control needle curvature minimizes placement errors due to torsional rigidity that is compromised by the flexure element. A prototype of the proposed needle was developed and was demonstrated in air, in tissue-mimicking gel, and in pig liver. Needle insertion studies with the prototype showed that increasing the wire diameter from 0.15 to 0.24 mm insignificantly affected the maximum needle tip deflection (19.4±0.3 mm for 150 mm insertion), but significantly increased the actuation current (from 0.60 to 1.04 A).

References

References
1.
Abolhassani
,
N.
,
Patel
,
R.
, and
Moallem
,
M.
,
2007
, “
Needle Insertion Into Soft Tissue: A Survey
,”
Med. Eng. Phys.
,
29
(
4
), pp.
413
431
.
2.
Webster
,
R. J.
,
Memisevic
,
J.
, and
Okamura
,
A. M.
,
2005
, “
Design Considerations for Robotic Needle Steering
,”
IEEE International Conferfeerence on Robotics and Automation
(
ICRA 2005
), Barcelona, Spain, Apr. 18–22, pp.
3588
3594
.
3.
Reed
,
K. B.
,
Okamura
,
A. M.
, and
Cowan
,
N. J.
,
2009
, “
Modeling and Control of Needles With Torsional Friction
,”
IEEE Trans. Biomed. Eng.
,
56
(
12
), pp.
2905
2916
.
4.
Swensen
,
J. P.
, and
Cowan
,
N. J.
,
2012
, “
Torsional Dynamics Compensation Enhances Robotic Control of Tip-Steerable Needles
,”
IEEE International Conferfeerence on Robotics and Automation
(
ICRA
), St. Paul, MN, May 14–18, pp.
1601
1606
.
5.
Asadian
,
A.
,
Patel
,
R. V.
, and
Kermani
,
M. R.
,
2014
, “
Dynamics of Translational Friction in Needle-Tissue Interaction During Needle Insertion
,”
Ann. Biomed. Eng.
,
42
(
1
), pp.
73
85
.
6.
Minhas
,
D. S.
,
Engh
,
J. A.
,
Fenske
,
M. M.
, and
Riviere
,
C. N.
,
2007
, “
Modeling of Needle Steering Via Duty-Cycled Spinning
,”
IEEE International Conference on Engineering in Medicine and Biology Society
(
EMBS 2007
), Lyon, France, Aug. 22–26, pp.
2756
2759
.
7.
Wedlick
,
T. R.
, and
Okamura
,
A. M.
,
2010
, “
Characterization of Pre-Curved Needles for Steering in Tissue
,”
IEEE International Conference on Engineering in Medicine and Biology Society
(
EMBC 2009
), Minneapolis, MN, Sept. 3–6, pp.
1200
1203
.
8.
Swaney
,
P. J.
,
Burgner
,
J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2013
, “
A Flexure-Based Steerable Needle: High Curvature With Reduced Tissue Damage
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
906
909
.
9.
Okazawa
,
S.
,
Ebrahimi
,
R.
,
Chuang
,
J.
,
Salcudean
,
S. E.
, and
Rohling
,
R.
,
2005
, “
Hand-Held Steerable Needle Device
,”
IEEE/ASME Trans. Mechatron.
,
10
(
3
), pp.
285
296
.
10.
Frasson
,
L.
,
Ko
,
S. Y.
,
Turner
,
A.
,
Parittotokkaporn
,
T.
,
Vincent
,
J. F.
, and
Rodriguez y Baena
,
F.
,
2010
, “
STING: A Soft-Tissue Intervention and Neurosurgical Guide to Access Deep Brain Lesions Through Curved Trajectories
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
224
(
6
), pp.
775
788
.
11.
Datla
,
N. V.
,
Konh
,
B.
,
Koo
,
J. J. Y.
,
Choi
,
D. J. W.
,
Yu
,
Y.
,
Dicker
,
A. P.
,
Podder
,
T. K.
,
Darvish
,
K.
, and
Hutapea
,
P.
,
2014
, “
Polyacrylamide Phantom for Self-Actuating Needle-Tissue Interaction Studies
,”
Med. Eng. Phys.
,
36
(
1
), pp.
140
145
.
12.
Datla
,
N. V.
,
Honarvar
,
M.
,
Nguyen
,
T. M.
,
Konh
,
B.
,
Darvish
,
K.
,
Yu
,
Y.
,
Dicker
,
A. P.
, and
Hutapea
,
P.
,
2012
, “
Towards a Nitinol Actuator for an Active Surgical Needle
,”
ASME
Paper No. SMASIS2012-8204
.
13.
Honarvar
,
M.
,
Datla
,
N. V.
,
Konh
,
B.
,
Podder
,
T. K.
,
Dicker
,
A. P.
,
Yu
,
Y.
, and
Hutapea
,
P.
,
2014
, “
Study of Unrecovered Strain and Critical Stresses in One-Way Shape Memory Nitinol
,”
J. Mater. Eng. Perform.
,
23
(
8
), pp.
2885
2893
.
14.
Datla
,
N. V.
,
Konh
,
B.
,
Honarvar
,
M.
,
Podder
,
T. K.
,
Dicker
,
A. P.
,
Yu
,
Y.
, and
Hutapea
,
P.
,
2014
, “
A Model to Predict Deflection of Bevel-Tipped Active Needle Advancing in Soft Tissue
,”
Med. Eng. Phys.
,
36
(
3
), pp.
285
293
.
15.
Konh
,
B.
,
Datla
,
N. V.
, and
Hutapea
,
P.
,
2015
, “
Feasibility of SMA Wire Actuation for an Active Steerable Cannula
,”
ASME J. Med. Devices
,
9
(
2
), p.
021002
.
16.
Ryu
,
S. C.
,
Renaud
,
P.
,
Black
,
R. J.
,
Daniel
,
B. L.
, and
Cutkosky
,
M. R.
,
2011
, “
Feasibility Study of an Optically Actuated MR-Compatible Active Needle
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
2564
2569
.
17.
Ryu
,
S.
,
Quek
,
Z.
, and
Renaud
,
P.
,
2012
, “
An Optical Actuation System and Curvature Sensor for a MR-Compatible Active Needle
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), St. Paul, MN, May 14–18, pp.
1589
1594
.
18.
Black
,
R. J.
,
Ryu
,
S. C.
,
Moslehi
,
B.
, and
Costa
,
J. M.
,
2014
, “
Characterization of Optically Actuated MRI-Compatible Active Needles for Medical Interventions
,”
Proc. SPIE
,
9058
, p.
90580J
.
19.
Ayvali
,
E.
,
Liang
,
C.-P.
,
Ho
,
M.
,
Chen
,
Y.
, and
Desai
,
J. P.
,
2012
, “
Towards a Discretely Actuated Steerable Cannula for Diagnostic and Therapeutic Procedures
,”
Int. J. Rob. Res.
,
31
(
5
), pp.
588
603
.
20.
Ayvali
,
E.
, and
Desai
,
J. P.
,
2014
, “
Pulse Width Modulation-Based Temperature Tracking for Feedback Control of a Shape Memory Alloy Actuator
,”
J. Intell. Mater. Syst. Struct.
,
25
(
6
), pp.
720
730
.
21.
Datla
,
N. V.
,
Konh
,
B.
, and
Hutapea
,
P.
,
2014
, “
A Flexible Active Needle for Steering in Soft Tissues
,”
40th Annual Northeast Bioengineering Conference
(
NEBEC
), Boston, MA, Apr. 25–27.
22.
Krupski
,
T. L.
,
Gundersen
,
C.
,
Carson
,
W. C.
,
Moskalul
,
C.
,
Harper
,
J.
, and
Gerling
,
G. J.
,
2010
, “
Assessing Mechanical Properties of Benign and Malignant Prostate Tissue
,”
J. Clin. Oncol.
,
28
(
15
), p.
e15109
.
23.
Misra
,
S.
,
Reed
,
K. B.
,
Schafer
,
B. W.
,
Ramesh
,
K. T.
, and
Okamura
,
A. M.
,
2010
, “
Mechanics of Flexible Needles Robotically Steered Through Soft Tissue
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1640
1660
.
You do not currently have access to this content.