Over past few years, we are developing a system for facilitating large scale screening of patients for cardiovascular risk—arterial stiffness evaluation for noninvasive screening (ARTSENS). ARTSENS is an image-free device that uses a single element ultrasound transducer to obtain noninvasive measurements of arterial stiffness (AS) in a fully automated manner. AS is directly proportional to end-diastolic lumen diameter (Dd). Multilayered structure of the arterial walls and indistinct characteristics of intima-lumen interface (ILI) makes it quite difficult to accurately estimate Dd in A-mode radio-frequency (RF) frames obtained from ARTSENS. In this paper, we propose a few methods based on fitting simple mathematical models to the echoes from arterial walls, followed by a novel method to fuse the information from curve fitting error and distension curve to arrive at an accurate measure of Dd. To bring down the curve fitting time and facilitate processing on low-end processors, a novel approach using the autocorrelation of echoes from opposite walls of the artery has been discussed. The methods were analyzed for their comparative accuracy against reference Dd obtained from 85 human volunteers using Hitachi-Aloka eTRACKING system. Dd from all reported methods show strong and statistically significant positive correlation with eTRACKING and mean error of less than 7% could be achieved. As expected, Dd from all methods show significant positive correlation with age.

References

References
1.
WHO Media Centre
,
2013
, “
Cardiovascular Diseases (CVDs)
,” World Health Organization, Geneva, Switzerland, Fact Sheet No. 317.
2.
Mendis
,
S.
,
Puska
,
P.
, and
Norrving
,
B.
,
2011
,
Global Atlas on Cardiovascular Disease Prevention and Control
, World Health Organization, Geneva, Switzerland.
3.
Liao
,
D.
,
Arnett
,
D. K.
,
Tyroler
,
H. A.
,
Riley
,
W. A.
,
Chambless
,
L. E.
,
Szklo
,
M.
, and
Heiss
,
G.
,
1999
, “
Arterial Stiffness and the Development of Hypertension: The ARIC Study
,”
Hypertension
,
34
(
2
), pp.
201
206
.
4.
Oliver
,
J.
, and
Webb
,
D.
,
2003
, “
Noninvasive Assessment of Arterial Stiffness and Risk of Atherosclerotic Events
,”
Arterioscler., Thromb., Vasc. Biol.
,
23
(
4
), pp.
554
566
.
5.
Laurent
,
S.
,
Cockcroft
,
J.
,
Van Bortel
,
L.
,
Boutouyrie
,
P.
,
Giannattasio
,
C.
,
Hayoz
,
D.
,
Pannier
,
B.
,
Vlachopoulos
,
C.
,
Wilkinson
,
I.
, and
Struijker-Boudier
,
H.
,
2006
, “
Expert Consensus Document on Arterial Stiffness: Methodological Issues and Clinical Applications
,”
Eur. Heart J.
,
27
(
21
), pp.
2588
2605
.
6.
MCI
,
2014
, “
Search Colleges & Courses
,” Medical Council of India, New Delhi, India, http://www.mciindia.org/InformationDesk/CollegesCoursesSearch.aspx
7.
Alwan
,
A.
,
Armstrong
,
T.
,
Cowan
,
M.
, and
Riley
,
L.
,
2011
, “
Noncommunicable Diseases Country Profiles 2011
,” WHO Global Report, World Health Organization, Geneva, Switzerland.
8.
Joseph
,
J.
, and
Jayashankar
,
V.
,
2010
, “
A Virtual Instrument for Automated Measurement of Arterial Compliance
,”
ASME J. Med. Devices
,
4
(
4
), p.
045004
.
9.
Sahani
,
A. K.
,
Shah
,
M. I.
,
Radhakrishnan
,
R.
,
Joseph
,
J.
, and
Sivaprakasam
,
M.
,
2015
, “
An Imageless Ultrasound Device to Measure Local and Regional Arterial Stiffness
,”
IEEE Trans. Biomed. Circuits Syst.
(in press).
10.
Sahani
,
A. K.
,
Joseph
,
J.
, and
Sivaprakasam
,
M.
,
2012
, “
Automated System for Imageless Evaluation of Arterial Compliance
,”
34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), San Diego, CA, Aug. 28–Sept. 1, pp.
227
231
.
11.
Sahani
,
A. K.
,
Joseph
,
J.
, and
Mohanasankar
,
S.
,
2014
, “
Evaluation of the Algorithm for Automatic Identification of the Common Carotid Artery in ARTSENS
,”
Physiol. Meas.
,
35
(
7
), pp.
1299
1317
.
12.
Sahani
,
A. K.
,
Shah
,
M.
,
Joseph
,
J.
, and
Sivaprakasam
,
M.
,
2014
, “
An Improved Method for Detection of Carotid Walls in ARTSENS
,”
36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Chicago, Aug. 26–30, pp.
1957
1960
.
13.
Sahani
,
A. K.
,
Shah
,
M. I.
,
Joseph
,
J.
, and
Sivaprakasam
,
M.
,
2015
, “
Carotid and Jugular Classification in ARTSENS
,”
IEEE J. Biomed. Health Inf.
(in press).
14.
Mackenzie
,
I. S.
,
Wilkinson
,
I. B.
, and
Cockcroft
,
J. R.
,
2002
, “
Assessment of Arterial Stiffness in Clinical Practice
,”
QJM
,
95
(
2
), pp.
67
74
.
15.
Pannier
,
B. M.
,
Avolio
,
A. P.
,
Hoeks
,
A.
,
Mancia
,
G.
, and
Takazawa
,
K.
,
2002
, “
Methods and Devices for Measuring Arterial Compliance in Humans
,”
Am. J. Hypertens.
,
15
(
8
), pp.
743
753
.
16.
Sahani
,
A. K.
,
Ravi
,
V.
, and
Sivaprakasam
,
M.
,
2014
, “
Automatic Estimation of Carotid Arterial Pressure in ARTSENS
,”
11th IEEE India Conference
(
INDICON 2014
), Pune, India, Dec. 11–13.
17.
Stadler
,
R.
,
Taylor
,
J. A.
, and
Lees
,
R.
,
1997
, “
Comparison of B-Mode, M-Mode and Echo-Tracking Methods for Measurement of the Arterial Distension Waveform
,”
Ultrasound Med. Biol.
,
23
(
6
), pp.
879
887
.
18.
Carerj
,
S.
,
Nipote
,
C.
, and
Zimbalatti
,
C.
,
2008
, “
A New Tool for the Evaluation of Stiffness Vascular Parameters in Clinical Practice: eTracking
,” Cardiology Department, University of Messina, Messina, Italy, available at:
19.
Joseph
,
J.
,
2010
, “
Automated Evaluation of Local and Regional Arterial Compliance
,” Ph.D. thesis, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India.
20.
Hoeks
,
A. P. G.
,
Brands
,
P. J.
,
Willigers
,
J. M.
, and
Reneman
,
R. S.
,
1999
, “
Non-Invasive Measurement of Mechanical Properties of Arteries in Health and Disease
,”
Proc. Inst. Mech. Eng., Part H
,
213
(
3
), pp.
195
202
.
21.
Shah
,
M.
,
Joseph
,
J.
, and
Sivaprakasam
,
M.
,
2014
, “
Ultrasound Signal Quality Parameterization for Image-Free Evaluation of Arterial Stiffness
,”
36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Chicago, Aug. 26–30, pp.
2326
2329
.
22.
Wendelhag
,
I.
,
Gustavsson
,
T.
,
Suurkiila
,
M.
,
Berglundt
,
G.
, and
Wikstrand
,
J.
,
1991
, “
Ultrasound Measurement of Wall Thickness in the Carotid Artery: Fundamental Principles and Description of a Computerized Analysing System
,”
Clin. Physiol. Funct. Imaging
,
11
(
6
), pp.
565
577
.
23.
Hoeks
,
A. P. G.
,
Brands
,
P. J.
,
Smeets
,
F. A. M.
, and
Reneman
,
R. S.
,
1990
, “
Assessment of the Distensibility of Superficial Arteries
,”
Ultrasound Med. Biol.
,
16
(
2
), pp.
121
128
.
24.
Demirli
,
R.
,
Member
,
S.
,
Saniie
,
J.
, and
Member
,
S.
,
2001
, “
Model-Based Estimation of Ultrasonic Echoes Part I: Analysis and Algorithms
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
48
(
3
), pp.
787
802
.
25.
Fan
,
L.
,
Santago
,
P.
,
Riley
,
W.
,
Herrington
,
D. M.
,
An
,
L. I. F.
,
Antago
,
P. E. S.
,
Iley
,
W. A. R. D. R.
, and
Errington
,
D. A. M. H.
,
2001
, “
An Adaptive Template-Matching Method and Its Application to the Boundary Detection of Brachial Artery Ultrasound Scans
,”
Ultrasound Med. Biol.
,
27
(
3
), pp.
399
408
.
26.
Li
,
S.
,
McDicken
,
W.
, and
Hoskins
,
P.
,
1993
, “
Blood Vessel Diameter Measurement by Ultrasound
,”
Physiol. Meas
,
14
(
3
), pp.
291
297
.
27.
Potter
,
K.
,
Reed
,
C. J.
,
Green
,
D. J.
,
Hankey
,
G. J.
, and
Arnolda
,
L. F.
,
2008
, “
Ultrasound Settings Significantly Alter Arterial Lumen and Wall Thickness Measurements
,”
Cardiovasc. Ultrasound
,
6
(
1
), p.
6
.
28.
Hasegawa
,
H.
,
Kanai
,
H.
, and
Koiwa
,
Y.
,
2004
, “
Detection of Lumen-Intima Interface of Posterior Wall for Measurement of Elasticity of the Human Carotid Artery
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
51
(
1
), pp.
93
108
.
29.
Delsanto
,
S.
,
Molinari
,
F.
,
Giustetto
,
P.
,
Liboni
,
W.
,
Badalamenti
,
S.
, and
Suri
,
J. S.
,
2007
, “
Characterization of a Completely User-Independent Algorithm for Carotid Artery Segmentation in 2-D Ultrasound Images
,”
IEEE Trans. Instrum. Meas.
,
56
(
4
), pp.
1265
1274
.
30.
Ilea
,
D. E.
,
Duffy
,
C.
,
Kavanagh
,
L.
,
Stanton
,
A.
,
Whelan
,
P. F.
, and
Member
,
S.
,
2013
, “
Fully Automated Segmentation and Tracking of the Intima Media Thickness in Ultrasound Video Sequences of the Common Carotid Artery
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
60
(
1
), pp.
158
177
.
31.
Stadler
,
R. W.
,
Karl
,
W. C.
, and
Lees
,
R. S.
,
1996
, “
New Methods for Arterial Diameter Measurement From B-Mode Images
,”
Ultrasound Med. Biol.
,
22
(
1
), pp.
25
34
.
32.
François
,
B.
,
Carmassi
,
S.
,
Salvetti
,
M. V.
,
Ghiadoni
,
L.
,
Huang
,
Y.
,
Taddei
,
S.
, and
Salvetti
,
A.
,
2002
, “
Automatic Evaluation of Arterial Diameter Variation From Vascular Echographic Images
,”
Ultrasound Med. Biol.
,
27
(
12
), pp.
1621
1629
.
33.
Gutierrez
,
M. A.
,
Pilon
,
P. E.
,
Lage
,
S. G.
,
Kopel
,
L.
,
Carvalho
,
R. T.
,
Furuie
,
S. S.
, and
Paulo
,
S.
,
2002
, “
Automatic Measurement of Carotid Diameter and Wall Thickness in Ultrasound Images
,”
Comput. Cardiol.
,
29
, pp.
359
362
.
34.
Potter
,
K.
,
Green
,
D. J.
,
Reed
,
C. J.
,
Woodman
,
R. J.
,
Watts
,
G. F.
,
McQuillan
,
B. M.
,
Burke
,
V.
,
Hankey
,
G. J.
, and
Arnolda
,
L. F.
,
2007
, “
Carotid Intima-Medial Thickness Measured on Multiple Ultrasound Frames: Evaluation of a DICOM-Based Software System
,”
Cardiovasc. Ultrasound
,
5
(
1
), p.
29
.
35.
Newey
,
V. R.
, and
Nassiri
,
D. K.
,
2002
, “
Online Artery Diamaeter Measurement in Ultrasound Images Using Artificial Neural Networks
,”
Ultrasound Med. Biol.
,
28
(
2
), pp.
209
216
.
36.
Cinthio
,
M.
,
Jansson
,
T.
,
Ahlgren
,
A. R.
,
Lindström
,
K.
, and
Persson
,
H. W.
,
2010
, “
A Method for Arterial Diameter Change Measurements Using Ultrasonic B-Mode Data
,”
Ultrasound Med. Biol.
,
36
(
9
), pp.
1504
1512
.
37.
Molinari
,
F.
,
Krishnamurthi
,
G.
,
Acharya
,
U. R.
,
Sree
,
S. V.
,
Saba
,
L.
,
Nicolaides
,
A.
, and
Suri
,
J. S.
,
2012
, “
Hypothesis Validation of Far-Wall Brightness in Carotid-Artery Ultrasound for Feature-Based IMT Measurement Using a Combination of Level-Set Segmentation and Registration
,”
IEEE Trans. Instrum. Meas.
,
61
(
4
), pp.
1054
1063
.
38.
Martin Bland
,
J.
, and
Altman
,
D.
,
1986
, “
Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement
,”
Lancet
,
327
(
8476
), pp.
307
310
.
39.
Eigenbrodt
,
M. L.
,
Bursac
,
Z.
,
Rose
,
K. M.
,
Couper
,
D. J.
,
Tracy
,
R. E.
,
Evans
,
G. W.
,
Brancati
,
F. L.
, and
Mehta
,
J. L.
,
2006
, “
Common Carotid Arterial Interadventitial Distance (Diameter) as an Indicator of the Damaging Effects of Age and Atherosclerosis, a Cross-Sectional Study of the Atherosclerosis Risk in Community Cohort Limited Access Data (ARICLAD), 1987-89
,”
Cardiovasc. Ultrasound
,
4
(
1
), p.
1
.
You do not currently have access to this content.