Experimental intranasal (IN) delivery of nanoparticle (NP) drug carriers is typically performed using a pipette with or without anesthesia, a technique that may be a poor simulation of practical IN administration of drug-loaded NPs in humans. Existing IN spray devices suffer from drawbacks in terms of variability in dose-control and spray duration as well as the application of nonuniform pressure fields when a NP-formulated drug is aerosolized. Furthermore, existing spray devices require large volumes that may not be available or may be prohibitively expensive to prepare. In response, we have developed a novel pneumatically driven IN spray device for the administration of NPs, which is capable of administering extremely small quantities (50–100 μl) of NP suspension in a fine spray that disperses the NPs uniformly onto the tissue. This device was validated using haloperidol-loaded Solanum tuberosum lectin (STL)-functionalized, poly(ethylene glycol)–block-poly(d,l-lactic-co-glycolic acid) (PEG–PLGA) NPs targeted for delivery to the brain for schizophrenia treatment. A pneumatic pressure of 100 kPa was found to be optimal to produce a spray that effectively aerosolizes NP suspensions and delivers them evenly to the olfactory epithelium. IN administration of STL-functionalized NPs using the IN spray device increased brain tissue haloperidol concentrations by a factor of 1.2–1.5× compared to STL-functionalized NPs administered IN with a pipette. Such improved delivery enables the use of lower drug doses and thus offers both fewer local side-effects and lower costs without compromising therapeutic efficacy.

References

1.
Sahoo
,
S.
, and
Labhasetwar
,
V.
,
2003
, “
Nanotech Approaches in Drug Delivery and Imaging
,”
Drug Discovery Today
,
8
(
24
), pp.
1112
1120
.
2.
Ereshefsky
,
L.
, and
Mascarenas
,
C.
,
2003
, “
Comparison of the Effects of Different Routes of Antipsychotic Administration on Pharmacokinetics and Pharmacodynamics
,”
J. Clin. Psychiatry
,
64
(
Suppl 16
), pp.
18
23
.
3.
Kumar
,
M.
,
Misra
,
A.
,
Babbar
,
A.
,
Mishra
,
A.
,
Mishra
,
P.
, and
Pathak
,
K.
,
2008
, “
Intranasal Nanoemulsion Based Brain Targeting Drug Delivery System of Risperidone
,”
Int. J. Pharm.
,
358
(
1–2
), pp.
285
291
.
4.
Luppi
,
B.
,
Bigucci
,
F.
,
Abruzzo
,
A.
,
Corace
,
G.
,
Cerchiara
,
T.
, and
Zecchi
,
V.
,
2010
, “
Freeze-Dried Chitosan/Pectin Nasal Inserts for Antipsychotic Drug Delivery
,”
Eur. J. Pharm. Biopharm.
,
75
(
3
), pp.
381
387
.
5.
Ugwoke
,
M. I.
,
Exaud
,
S.
,
Van Den Mooter
,
G.
,
Verbeke
,
N.
, and
Kinget
,
R.
,
1999
, “
Bioavailability of Apomorphine Following Intranasal Administration of Mucoadhesive Drug Delivery Systems in Rabbits
,”
Eur. J. Pharm. Sci.
,
9
(
2
), pp.
213
219
.
6.
Piazza
,
J.
,
Hoare
,
T.
,
Molinaro
,
L.
,
Terpstra
,
K.
,
Bhandari
,
J.
,
Selvaganapathy
,
P. R.
,
Gupta
,
B.
, and
Mishra
,
R. K.
,
2014
, “
Intranasally Administered Lectin Functionalized Poly(Ethylene Glycol)–Block-Poly(d,l)-Lactic-co-Glycolic Acid (PEG–PLGA) Nanoparticles for the Treatment of Schizophrenia
,”
Eur. J. Pharm. Biopharm.
,
87
(
1
), pp.
30
39
.
7.
Chhajed
,
S.
,
Sangale
,
S.
, and
Barhate
,
S.
,
2011
, “
Advantageous Nasal Drug Delivery System: A Review
,”
Int. J. Pharm. Sci. Res.
,
2
(
6
), pp.
1322
1336
.
8.
Chen
,
J.
,
Zhang
,
C.
,
Liu
,
Q.
,
Shao
,
X.
,
Feng
,
C.
,
Shen
,
Y.
,
Zhang
,
Q.
, and
Jiang
,
X.
,
2012
, “
Solanum tuberosum Lectin-Conjugated PLGA Nanoparticles for Nose-to-Brain Delivery: In Vivo and In Vitro Evaluations
,”
J. Drug Targeting
,
20
(
2
), pp.
174
184
.
9.
Gao
,
X. L.
,
Tao
,
W. X.
,
Lu
,
W.
,
Zhang
,
Q. Z.
,
Zhang
,
Y.
,
Jiang
,
X. G.
, and
Fu
,
S.
,
2006
, “
Lectin-Conjugated PEG–PLA Nanoparticles: Preparation and Brain Delivery After Intranasal Administration
,”
Biomaterials
,
27
(
18
), pp.
3482
3490
.
10.
Xia
,
H. M.
,
Gao
,
X. L.
,
Gu
,
G. Z.
,
Liu
,
Z. Y.
,
Zeng
,
N.
,
Hu
,
Q. Y.
,
Song
,
Q.
,
Yao
,
L.
,
Pang
,
Z.
,
Jiang
,
X.
,
Chen
,
J.
, and
Chen
,
H.
,
2011
, “
Low Molecular Weight Protamine-Functionalized Nanoparticles for Drug Delivery to the Brain After Intranasal Administration
,”
Biomaterials
,
32
(
36
), pp.
9888
9898
.
11.
Illum
,
L.
,
2003
, “
Nasal Drug Delivery—Possibilities, Problems and Solutions
,”
J. Controlled Release
,
87
(
1–3
), pp.
187
198
.
12.
Langford
,
A.
,
Barney
,
B.
, and
Stretton
,
C.
,
2010
, “
Spray Device
,” U.S. Patent No. 7,845,346 B2.
13.
Wermeling
,
D. P.
,
Vallance
,
R.
,
Balasubramaniam
,
A.
,
Walcott
,
B. L.
,
Main
,
A.
,
Lumpp
,
J. E.
,
2005
, “
Programmable Multi-Dose Intranasal Drug Delivery
,” U.S. Patent No. 6,948,492 B2.
14.
Kimbell
,
J. S.
,
Segal
,
R. A.
,
Asgharian
,
B.
,
Wong
,
B. A.
,
Schroeter
,
J. D.
,
Southall
,
J. P.
,
Dickens
,
C. J.
,
Brace
,
G.
, and
Miller
,
F. J.
,
2007
, “
Characterization of Deposition From Nasal Spray Devices Using a Computational Fluid Dynamics Model of the Human Nasal Passages
,”
J. Aerosol Med.
,
20
(
1
), pp.
59
74
.
15.
Castro
,
G. H.
,
Herdtle
,
T.
,
Arsenault
,
C. M.
, and
Davis
,
A. J.
,
2003
, “
Metering Valve for a Metered Dose Inhaler Having Improved Flow
,” U.S. Patent No. 6,640,805 B2.
16.
Elder
,
D.
,
Grant
,
A. C.
,
Godfrey
,
J.
,
Slater
,
A.
,
Bone
,
G.
, and
Cannon
,
G.
,
2012
, “
Development of a Novel Intra-Nasal Spray Product—A Case History
,”
Eur. Ind. Pharm.
,
15
, pp.
12
14
.
17.
Djupesland
,
P. G.
,
2013
, “
Nasal Drug Delivery Devices: Characteristics and Performance in a Clinical Perspective—A Review
,”
Drug Delivery Transl. Res.
,
3
(
1
), pp.
42
62
.
18.
Kleene
,
R.
, and
Schachner
,
M.
,
2004
, “
Glycans and Neural Cell Interactions
,”
Nat. Rev. Neurosci.
,
5
(
3
), pp.
195
208
.
19.
Pastor
,
L.
,
Frutos
,
M.
,
Grana
,
L.
,
Ramos
,
D.
,
Gallego-Huidobro
,
J.
, and
Calvo
,
A.
,
1992
, “
Histochemical Study of Glycoconjugates in the Nasal Mucosa of the Rat and Guinea Pig
,”
Histochem. J.
,
24
(
10
), pp.
727
736
.
20.
Vila
,
A.
,
Sánchez
,
A.
,
Evora
,
C.
,
Soriano
,
I.
,
McCallion
,
O.
, and
Alonso
,
M.
,
2005
, “
PLA–PEG Particles as Nasal Protein Carriers: The Influence of the Particle Size
,”
Int. J. Pharm.
,
292
(
1–2
), pp.
43
52
.
21.
Gañán-Calvo
,
A. M.
,
1998
, “
Generation of Steady Liquid Microthreads and Micron-Sized Monodisperse Sprays in Gas Streams
,”
Phys. Rev. Lett.
,
80
(
2
), pp.
285
288
.
22.
Gañán-Calvo
,
A. M.
,
2005
, “
Enhanced Liquid Atomization: From Flow-Focusing to Flow-Blurring
,”
Appl. Phys. Lett.
,
86
(
21
), p.
214101
.
23.
Zhao
,
K.
,
Dalton
,
P.
,
Yang
,
G. C.
, and
Scherer
,
P. W.
,
2006
, “
Numerical Modeling of Turbulent and Laminar Airflow and Odorant Transport During Sniffing in the Human and Rat Nose
,”
Chem. Senses
,
31
(
2
), pp.
107
118
.
24.
Gross
,
E. A.
,
Swenberg
,
J. A.
,
Fields
,
S.
, and
Popp
,
J. A.
,
1982
, “
Comparative Morphometry of the Nasal Cavity in Rats and Mice
,”
J. Anat.
,
135
(
Pt 1
), pp.
83
88
.
25.
Geyer
,
M. A.
,
Krebs-Thomson
,
K.
,
Braff
,
D. L.
, and
Swerdlow
,
N. R.
,
2001
, “
Pharmacological Studies of Prepulse Inhibition Models of Sensorimotor Gating Deficits in Schizophrenia: A Decade in Review
,”
Psychopharmacology
,
156
(
2–3
), pp.
117
154
.
26.
Costain
,
W.
,
Buckley
,
A.
,
Evans
,
M.
,
Mishra
,
R. K.
, and
Johnson
,
R.
,
1999
, “
Modulatory Effects of PLG and Its Peptidomimetics on Haloperidol Induced Catalepsy in Rats
,”
Peptides
,
20
(
6
), pp.
761
767
.
27.
Adams
,
M.
,
Brandon
,
E.
,
Chartoff
,
E.
,
Idzerda
,
R.
,
Dorsa
,
D.
, and
McKnight
,
G.
,
1997
, “
Loss of Haloperidol Induced Gene Expression and Catalepsy in Protein Kinase A-Deficient Mice
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
(
22
), pp.
12157
12161
.
28.
Igarashi
,
K.
,
Kasuyal
,
F.
,
Fukuil
,
M.
,
Usuki
,
E.
, and
Castagnoli
,
N.
,
1995
, “
Studies on the Metabolism of Haloperidol (HP): The Role of CYP3A in the Production of the Neurotoxic Pyridinium Metabolite HPP+ Found in Rat Brain Following ip Administration of HP
,”
Life Sci.
,
57
(
26
), pp.
2439
2446
.
29.
Weiner
,
D.
, and
Brann
,
M.
,
1989
, “
The Distribution of a Dopamine D2 Receptor mRNA in Rat Brain
,”
Fed. Eur. Biochem. Soc. Lett.
,
253
(
1–2
), pp.
207
213
.
30.
Rivera
,
B.
,
Miller
,
S. R.
,
Brown
,
E. M.
, and
Price
,
R. E.
,
2005
, “
A Novel Method for Endotracheal Intubation of Mice and Rats Used in Imaging Studies
,”
J. Am. Assoc. Lab. Anim. Sci.
,
44
(
2
), pp.
52
55
.
31.
Öhman
,
R.
,
Larsson
,
M.
,
Nilsson
,
I.
,
Engel
,
J.
, and
Carlsson
,
A.
,
1977
, “
Neurometabolic and Behavioural Effects of Haloperidol in Relation to Drug Levels in Serum and Brain
,”
Naunyn-Schmiedeberg's Arch. Pharmacol.
,
299
(
2
), pp.
105
114
.
You do not currently have access to this content.