Otologic surgery often involves a mastoidectomy, which is the removal of a portion of the mastoid region of the temporal bone, to safely access the middle and inner ear. The surgery is challenging because many critical structures are embedded within the bone, making them difficult to see and requiring a high level of accuracy with the surgical dissection instrument, a high-speed drill. We propose to automate the mastoidectomy portion of the surgery using a compact, bone-attached robot. The system described in this paper is a milling robot with four degrees-of-freedom (DOF) that is fixed to the patient during surgery using a rigid positioning frame screwed into the surface of the bone. The target volume to be removed is manually identified by the surgeon pre-operatively in a computed tomography (CT) scan and converted to a milling path for the robot. The surgeon attaches the robot to the patient in the operating room and monitors the procedure. Several design considerations are discussed in the paper as well as the proposed surgical workflow. The mean targeting error of the system in free space was measured to be 0.5 mm or less at vital structures. Four mastoidectomies were then performed in cadaveric temporal bones, and the error at the edges of the target volume was measured by registering a postoperative computed tomography (CT) to the pre-operative CT. The mean error along the border of the milled cavity was 0.38 mm, and all critical anatomical structures were preserved.

References

References
1.
Paul
,
H. A.
,
Bargar
,
W. L.
,
Mittlestadt
,
B.
,
Musits
,
B.
,
Taylor
,
R. H.
,
Kazanzides
,
P.
,
Zuhars
,
J.
,
Williamson
,
B.
, and
Hanson
,
W.
,
1992
, “
Development of a Surgical Robot for Cementless Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
285
, pp.
57
66
.http://journals.lww.com/corr/Fulltext/1992/12000/Development_of_a_Surgical_Robot_for_Cementless.10.aspx
2.
Glassman
,
E.
,
Hanson
,
W. A.
,
Kazanzides
,
P.
,
Mittelstadt
,
B. D.
,
Musits
,
B. L.
,
Paul
,
H. A.
, and
Taylor
,
R. H.
,
1992
, “
Image-Directed Robotic System for Precise Robotic Surgery Including Redundant Consistency Checking
,” U.S. Patent No. 5,086,401.
3.
Ho
,
S. C.
,
Hibberd
,
R. D.
, and
Davies
,
B. L.
,
1995
, “
Robot Assisted Knee Surgery
,”
IEEE Eng. Med. Biol. Mag.
,
14
(
3
), pp.
292
300
.10.1109/51.391774
4.
Labadie
,
R. F.
,
Majdani
,
O.
, and
Fitzpatrick
,
J. M.
,
2007
, “
Image-Guided Technique in Neurotology
,”
Otolaryngol. Clin. North Am.
,
40
(
3
), pp.
611
624
.10.1016/j.otc.2007.03.006
5.
Federspil
,
P. A.
,
Geisthoff
,
U. W.
,
Henrich
,
D.
, and
Plinkert
,
P. K.
,
2003
, “
Development of the First Force-Controlled Robot for Otoneurosurgery
,”
Laryngoscope
,
113
(
3
), pp.
465
471
.10.1097/00005537-200303000-00014
6.
Xia
,
T.
,
Baird
,
C.
,
Jallo
,
G.
,
Hayes
,
K.
,
Nakajima
,
N.
,
Hata
,
N.
, and
Kazanzides
,
P.
,
2008
, “
An Integrated System for Planning, Navigation and Robotic Assistance for Skull Base Surgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
4
(
4
), pp.
321
330
.10.1002/rcs.213
7.
Danilchenko
,
A.
,
Balachandran
,
R.
,
Toennies
,
J. L.
,
Baron
,
S.
,
Munske
,
B.
,
Fitzpatrick
,
J. M.
,
Withrow
,
T. J.
,
Webster
,
R. J.
, III
, and
Labadie
,
R. F.
,
2011
, “
Robotic Mastoidectomy
,”
Otol. Neurotol.
,
32
(
1
), pp.
11
16
.10.1097/MAO.0b013e3181fcee9e
8.
Lim
,
H.
,
Han
,
J.-M.
,
Hong
,
J.
,
Yi
,
B.-J.
,
Lee
,
S. H.
,
Jeong
,
J. H.
,
Matsumoto
,
N.
,
Oka
,
M.
,
Komune
,
S.
, and
Hashizume
,
M.
,
2011
, “
Image-Guided Robotic Mastoidectomy Using Human-Robot Collaboration Control
,”
International Conference on Mechatronics and Automation
(
ICMA
),
Beijing
, Aug. 7–10, pp.
549
554
.10.1109/ICMA.2011.5985720
9.
Bell
,
B.
,
Stieger
,
C.
,
Gerber
,
N.
,
Arnold
,
A.
,
Nauer
,
C.
,
Hamacher
,
V.
,
Kompis
,
M.
,
Nolte
,
L.
,
Caversaccio
,
M.
, and
Weber
,
S.
,
2012
, “
A Self-Developed and Constructed Robot for Minimally Invasive Cochlear Implantation
,”
Acta Otolaryngol.
,
132
(
4
), pp.
355
360
.10.3109/00016489.2011.642813
10.
Bell
,
B.
,
Gerber
,
N.
,
Williamson
,
T.
,
Gavaghan
,
K.
,
Wimmer
,
W.
,
Caversaccio
,
M.
, and
Weber
,
S.
,
2013
, “
In Vitro Accuracy Evaluation of Image-Guided Robot System for Direct Cochlear Access
,”
Otol. Neurotol.
,
34
(
7
), pp.
1284
1290
.10.1097/MAO.0b013e31829561b6
11.
Shoham
,
M.
,
Burman
,
M.
,
Zehavi
,
E.
,
Joskowicz
,
L.
,
Batkilin
,
E.
, and
Kunicher
,
Y.
,
2003
, “
Bone-Mounted Miniature Robot for Surgical Procedures: Concept and Clinical Applications
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
893
901
.10.1109/TRA.2003.817075
12.
Wolf
,
A.
,
Jaramaz
,
B.
,
Lisien
,
B.
, and
DiGioia
,
A. M.
,
2005
, “
MBARS: Mini Bone-Attached Robotic System for Joint Arthroplasty
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
1
(
2
), pp.
101
121
.10.1002/rcs.20
13.
Plaskos
,
C.
,
Cinquin
,
P.
,
Lavallée
,
S.
, and
Hodgson
,
A. J.
,
2005
, “
Praxiteles: A Miniature Bone-Mounted Robot for Minimal Access Total Knee Arthroplasty
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
1
(
4
), pp.
67
79
.10.1002/rcs.59
14.
Kratchman
,
L. B.
,
Blachon
,
G. S.
,
Withrow
,
T. J.
,
Balachandran
,
R.
,
Labadie
,
R. F.
, and
Webster
,
R. J.
,
2011
, “
Design of a Bone-Attached Parallel Robot for Percutaneous Cochlear Implantation
,”
IEEE Trans. Biomed. Eng.
,
58
(
10
), pp.
2904
2910
.10.1109/TBME.2011.2162512
15.
Kobler
,
J.-P.
,
Kotlarski
,
J.
,
Öltjen
,
J.
,
Baron
,
S.
, and
Ortmaier
,
T.
,
2012
, “
Design and Analysis of a Head-Mounted Parallel Kinematic Device for Skull Surgery
,”
Int. J. Comput. Assisted Radiol. Surg.
,
7
(
1
), pp.
137
149
.10.1007/s11548-011-0619-8
16.
Dillon
,
N. P.
,
Balachandran
,
R.
,
dit Falisse
,
A. M.
,
Wanna
,
G. B.
,
Labadie
,
R. F.
,
Withrow
,
T. J.
,
Fitzpatrick
,
J. M.
, and
Webster
,
R. J.
,
2014
, “
Preliminary Testing of a Compact Bone-Attached Robot for Otologic Surgery
,”
Proc. SPIE
,
9036
, p.
903614
.10.1117/12.2043875
17.
Noble
,
J. H.
,
Warren
,
F. M.
,
Labadie
,
R. F.
, and
Dawant
,
B. M.
,
2008
, “
Automatic Segmentation of the Facial Nerve and Chorda Tympani in CT Images Using Spatially Dependent Feature Values
,”
Med. Phys.
,
35
(
12
), pp.
5375
5384
.10.1118/1.3005479
18.
Noble
,
J. H.
,
Dawant
,
B. M.
,
Warren
,
F. M.
, and
Labadie
,
R. F.
,
2009
, “
Automatic Identification and 3D Rendering of Temporal Bone Anatomy
,”
Otol. Neurotol.
,
30
(
4
), pp.
436
442
.10.1097/MAO.0b013e31819e61ed
19.
Maes
,
F.
,
Collignon
,
A.
,
Vandermeulen
,
D.
,
Marchal
,
G.
, and
Suetens
,
P.
,
1997
, “
Multimodality Image Registration by Maximization of Mutual Information
,”
IEEE Trans. Med. Imaging
,
16
(
2
), pp.
187
198
.10.1109/42.563664
20.
Liu
,
X.
,
Cevikalp
,
H.
, and
Fitzpatrick
,
J. M.
,
2003
, “
Marker Orientation in Fiducial Registration
,”
Proc. SPIE
,
5032
, pp.
1176
1185
.10.1117/12.480860
21.
Dillon
,
N. P.
,
Kratchman
,
L. B.
,
Dietrich
,
M. S.
,
Labadie
,
R. F.
,
Webster
,
R. J.
, III
, and
Withrow
,
T. J.
,
2013
, “
An Experimental Evaluation of the Force Requirements for Robotic Mastoidectomy
,”
Otol. Neurotol.
,
34
(
7
), pp.
e93
e102
.10.1097/MAO.0b013e318291c76b
22.
Danilchenko
,
A.
,
2011
, “
Fiducial-Based Registration With Anisotropic Localization Error
,” Ph.D. dissertation,
Vanderbilt University
,
Nashville, TN
.
23.
Sonka
,
M.
,
Hlavac
,
V.
, and
Boyle
,
R.
,
2014
,
Image Processing, Analysis, and Machine Vision
,
Cengage Learning
,
Stamford, CT
.
24.
Balachandran
,
R.
,
Mitchell
,
J. E.
,
Dawant
,
B. M.
, and
Fitzpatrick
,
J. M.
,
2009
, “
Accuracy Evaluation of MicroTargeting Platforms for Deep-Brain Stimulation Using Virtual Targets
,”
IEEE Trans. Biomed. Eng.
,
56
(
1
), pp.
37
44
.10.1109/TBME.2008.2002110
25.
Fitzpatrick
,
J. M.
, and
Sonka
,
M.
,
2000
,
Handbook of Medical Imaging: Medical Image Processing and Analysis
,
SPIE Press
,
Bellingham, WA
.
You do not currently have access to this content.