Traditional hand-suturing for vascular connection techniques is time consuming, expensive, and requires highly complex instruments and technical expertise. The aim of this study is to develop a new vascular coupler that can be used in end-to-end anastomosis surgery in an easier and more efficient way for both arteries and veins. The vascular coupler has four rotatable wings and one translatable spike in each wing. Prototypes were manufactured using polytetrafluoroethylene (PTFE) and high-density polyethylene (HDPE). A set of installation tools was designed to facilitate the anastomosis process. Proof-of-concept testing with the vascular coupler using plastic tubes and porcine cadaver vessels showed that the coupler should work as designed. A simplified finite element (FE) model assisted in the evaluation of the tearing likelihood of human vessels during installation of the coupler. Results of tests on the coupler showed that the vascular coupler could be efficiently attached to blood vessels, did not leak after the anastomosis was performed, had sufficient joint strength, and had little impact on flow in the vessel. The entire anastomosis process can be completed in 3 min when using the vascular coupler to join porcine cadaver vessels.

References

References
1.
Chang
,
K. P.
,
Lin
,
S. D.
, and
Lai
,
C. S.
,
2007
, “
Clinical Experience of a Microvascular Venous Coupler Device in Free Tissue Transfers
,”
Kaohsiung J. Med. Sci.
,
23
(
11
), pp.
566
572
.10.1016/S1607-551X(08)70004-4
2.
Ross
,
D. A.
,
Chow
,
J. Y.
,
Shin
,
J.
, and
Restifo
,
R.
,
2005
, “
Arterial Coupling for Microvascular Free Tissue Transfer in Head and Neck Reconstruction
,”
Arch. Otolaryngol. Head Neck Surg.
,
131
(
10
), pp.
891
895
.10.1001/archotol.131.10.891
3.
Daniel
,
R. K.
,
Lidman
,
D.
,
Olding
,
M.
,
Williams
,
J. A.
, and
Matlaga
,
B. F.
,
1984
, “
An Anastomotic Device for Microvascular Surgery
,”
Ann. Plast. Surg.
,
13
(
5
), pp.
402
411
.10.1097/00000637-198411000-00008
4.
Carrel
,
A.
,
1902
, “
The Operative Technique for Vascular Anastomoses and Transplantation of Viscera
,”
Lyon Med.
,
98
(1), pp.
859
873
.
5.
Kleinert
,
H. E.
, and
Kasdan
,
M. L.
,
1963
, “
Restoration of Blood Flow in Upper Extremity Injuries
,”
J. Trauma Acute Care Surg.
,
3
(5), pp.
461
476
.10.1097/00005373-196309000-00007
6.
Yajima
,
K.
,
Yamamoto
,
Y.
,
Nohira
,
K.
,
Shintomi
,
Y.
,
Blondeel
,
P. N.
,
Sekido
,
M.
,
Mol
,
W.
,
Ueda
,
M.
, and
Sugihara
,
T.
,
2004
, “
A New Technique of Microvascular Suturing: The Chopstick Rest Technique
,”
Br. J. Plast. Surg.
,
57
(
6
), pp.
567
571
.10.1016/j.bjps.2004.06.009
7.
Zdolsek
,
J.
,
Ledin
,
H.
, and
Lidman
,
D.
,
2005
, “
Are Mechanical Microvascular Anastomoses Easier to Learn Than Suture Anastomoses?
Microsurgery
,
25
(
8
), pp.
596
598
.10.1002/micr.20172
8.
Andel
,
C. J.
,
Pistecky
,
P. V.
, and
Borst
,
C.
,
2003
, “
Mechanical Properties of Porcine and Human Arteries: Implications for Coronary Anastomotic Connectors
,”
Ann. Thorac. Surg.
,
76
(
1
), pp.
58
64
.10.1016/S0003-4975(03)00263-7
9.
Ferrari
,
E.
,
Tozzi
,
P.
, and
von Segesser
,
L. K.
,
2007
, “
The Vascular Join: A New Sutureless Anastomotic Device to Perform End-to-End Anastomosis. Preliminary Results in an Animal Model
,”
Interact. Cardiovasc. Thorac. Surg.
,
6
(1), pp.
5
8
.10.1510/icvts.2006.137943
10.
Filsoufi
,
F. R.
,
Farivar
,
S.
,
Aklog
,
L.
,
Anderson
,
C. A.
,
Chen
,
R. H.
,
Lichtenstein
,
S.
,
Zhang
,
J.
, and
Adams
,
D. H.
,
2004
, “
Automated Distal Coronary Bypass With a Novel Magnetic Coupler (MVP System)
,”
J. Thorac. Cardiovasc. Surg.
,
127
(
1
), pp.
185
192
.10.1016/j.jtcvs.2003.04.005
11.
Gummert
,
J. F.
,
Opfermann
,
U.
,
Jacobs
,
S.
,
Walther
,
T.
,
Kempfert
,
J.
,
Mohr
,
F. W.
, and
Falk
,
V.
,
2007
, “
Anastomotic Devices for Coronary Artery Bypass Grafting: Technological Options and Potential Pitfalls
,”
Comput. Biol. Med.
,
37
(
10
), pp.
1384
1393
.10.1016/j.compbiomed.2006.11.005
12.
Jacobs
,
S.
,
Mohr
,
F. W.
, and
Falk
,
V.
,
2004
, “
Facilitated Endoscopic Beating Heart Coronary Bypass Grafting Using Distal Anastomotic Device
,”
Int. Congr. Ser.
,
1268
, pp.
809
812
.10.1016/j.ics.2004.03.279
13.
Klima
,
U.
,
Maringka
,
M.
,
Bagaev
,
E.
,
Kirschner
,
S.
, and
Haverich
,
A.
,
2004
, “
Total Magnetic Vascular Coupling for Arterial Revascularization
,”
J. Thorac. Cardiovasc. Surg.
,
127
(
2
), pp.
602
603
.10.1016/j.jtcvs.2003.09.050
14.
Lally
,
C.
,
Reid
,
A. J.
, and
Prendergast
,
P. J.
,
2004
, “
Elastic Behavior of Porcine Coronary Artery Tissue Under Uniaxial and Equibiaxial Tension
,”
Ann. Biomed. Eng.
,
32
(
10
), pp.
1355
1364
.10.1114/B:ABME.0000042224.23927.ce
15.
Scheltes
,
J. S.
,
van Andel
,
C. J.
,
Pistecky
,
P. V.
, and
Borst
,
C.
,
2003
, “
Coronary Anastomotic Devices: Blood-Exposed Non-Intimal Surface and Coronary Wall Stress
,”
J. Thorac. Cardiovasc. Surg.
,
126
(
1
), pp.
191
199
.10.1016/S0022-5223(03)00021-7
16.
Suyker
,
W. J.
,
Buijsrogge
,
M. P.
,
Suyker
,
P. T.
,
Verlaan
,
C. W.
,
Borst
,
C.
, and
Grundeman
,
P. F.
,
2004
, “
Stapled Coronary Anastomosis With Minimal Intraluminal Artifact: The S2 Anastomotic System in the Off-Pump Porcine Model
,”
J. Thorac. Cardiovasc. Surg.
,
127
(
2
), pp.
498
503
.10.1016/j.jtcvs.2003.04.006
17.
Ueda
,
K.
,
Mukai
,
T.
,
Ichinose
,
S.
,
Koyama
,
Y.
, and
Takakuda
,
K.
,
2010
, “
Bioabsorbable Device for Small-Caliber Vessel Anastomosis
,”
Microsurgery
,
30
(
6
), pp.
494
501
.10.1002/micr.20764
18.
Spector
,
J. A.
,
Draper
,
L. B.
,
Levine
,
J. P.
, and
Ahn
,
C. Y.
,
2006
, “
Routine Use of Microvascular Coupling Device for Arterial Anastomosis in Breast Reconstruction
,”
Ann. Plast. Surg.
,
56
(
4
), pp.
365
368
.10.1097/01.sap.0000202614.45743.34
19.
Gehrke
,
C.
,
Li
,
H.
,
Sant
,
H.
,
Gale
,
B.
, and
Agarwal
,
J.
,
2014
, “
Design, Fabrication and Testing of a Novel Vascular Coupling Device
,”
Biomed. Microdevices
,
16
(
1
), pp.
173
180
.10.1007/s10544-013-9819-z
20.
Chernichenko
,
N.
,
Ross
,
D. A.
,
Shin
,
J.
,
Chow
,
J. Y.
,
Sasaki
,
C. T.
, and
Ariyan
,
S.
,
2008
, “
Arterial Coupling for Microvascular Free Tissue Transfer
,”
Otolaryngol. Head Neck Surg.
,
138
(
5
), pp.
614
618
.10.1016/j.otohns.2007.12.029
21.
Lally
,
C.
,
Dolan
,
F.
, and
Prendergast
,
P. J.
,
2005
, “
Cardiovascular Stent Design and Vessel Stresses: A Finite Element Analysis
,”
J. Biomech.
,
38
(
8
), pp.
1574
1581
.10.1016/j.jbiomech.2004.07.022
22.
Yamada
,
H.
, and
Evans
,
F. G.
,
1970
,
Strength of Biological Materials
,
Williams & Wilkins
,
Baltimore, MD
.
23.
Simon
,
B. R.
,
Kaufmann
,
M. V.
,
McAfee
,
M. A.
, and
Baldwin
,
A. L.
,
1993
, “
Finite Element Models for Arterial Wall Mechanics
,”
ASME J. Biomech. Eng.
,
115
(4B), pp.
489
496
.10.1115/1.2895529
24.
Khamdaeng
,
T.
,
Luo
,
J.
,
Vappo
,
J.
,
Terdtoon
,
P.
, and
Konofagou
,
E. E.
,
2012
, “
Arterial Stiffness Identification of the Human Carotid Artery Using the Stress–Strain Relationship In Vivo
,”
Ultrasonics
,
52
(
3
), pp.
402
411
.10.1016/j.ultras.2011.09.006
25.
Sommer
,
G.
,
Regitnig
,
P.
,
Költringer
,
L.
, and
Holzapfel
,
G. A.
,
2010
, “
Biaxial Mechanical Properties of Intact and Layer-Dissected Human Carotid Arteries at Physical and Supraphysical Loadings
,”
Am. J. Physiol., Heart Circ.
,
298
(3), pp.
898
912
.10.1152/ajpheart.00378.2009
You do not currently have access to this content.