The aim of this study is to focus on the effect of probe-to-specimen distance in kidney stone treatment with hydrodynamic bubbly cavitation. Cavitating bubbles were generated by running phosphate buffered saline (PBS) through stainless steel tubing of inner diameter of 1.56 mm at an inlet pressure of ∼10,000 kPa, which was connected to a 0.75 mm long probe with an inner diameter of 147 μm at the exit providing a sudden contraction and thus low local pressures. The bubbles were targeted on the surface of nine calcium oxalate kidney stones (submerged in a water pool at room temperature and atmospheric pressure) from three different distances, namely, 0.5 mm, 2.75 mm, and 7.75 mm. The experiments were repeated for three different time durations (5 min, 10 min, and 20 min). The experimental data show that amongst the three distances considered, the distance of 2.75 mm results in the highest erosion amount and highest erosion rate (up to 0.94 mg/min), which suggests that a closer distance does not necessarily lead to a higher erosion rate and that the probe-to-specimen distance is a factor of great importance, which needs to be optimized. In order to be able to explain the experimental results, a visualization study was also conducted with a high speed CMOS camera. A new correlation was developed to predict the erosion rates on kidney stones exposed to hydrodynamic cavitation as a function of material properties, time, and distance.

References

References
1.
Crowe
,
C. T.
,
2006
,
Multiphase Flow Handbook
,
CRC Press
,
Boca Raton, FL
.
2.
Eisenberg
,
P.
,
1963
,
Cavitation Damage
,
Hydronautics
,
Washington, DC
.
3.
Jyoti
,
K. K.
, and
Pandit
,
A. B.
,
2001
, “
Water Disinfection by Acoustic and Hydrodynamic Cavitation
,”
Biochem. Eng. J.
,
7
(
3
), pp.
201
212
.10.1016/S1369-703X(00)00128-5
4.
Schneider
,
B.
,
Kosar
,
A.
, and
Peles
,
Y.
,
2007
, “
Hydrodynamic Cavitation and Boiling in Refrigerant (R-123) Flow Inside Microchannels
,”
Int. J. Heat Mass Transfer
,
50
(
13
), pp.
2838
2854
.10.1016/j.ijheatmasstransfer.2007.01.002
5.
Ji
,
J.
,
Wang
,
J.
,
Li
,
Y.
,
Yu
,
Y.
, and
Xu
,
Z.
,
2006
, “
Preparation of Biodiesel With the Help of Ultrasonic and Hydrodynamic Cavitation
,”
Ultrasonics
,
44
(Suppl.), pp.
411
414
.10.1016/j.ultras.2006.05.020
6.
Huang
,
Y.
,
Wu
,
Y.
,
Huang
,
W.
,
Yang
,
F.
, and
e Ren
,
X.
,
2013
, “
Degradation of Chitosan by Hydrodynamic Cavitation
,”
Polym. Degrad. Stab.
,
98
(
1
), pp.
37
43
.10.1016/j.polymdegradstab.2012.11.001
7.
Kosar
,
A.
,
Sesen
,
M.
,
Oral
,
O.
,
Itah
,
Z.
, and
Gozuacik
,
D.
,
2011
, “
Bubbly Cavitating Flow Generation and Investigation of Its Erosional Nature for Biomedical Applications
,”
IEEE Trans. Biomed. Eng.
,
58
(
5
), pp.
1337
1346
.10.1109/TBME.2011.2107322
8.
Itah
,
Z.
,
Oral
,
O.
,
Sesen
,
M.
,
Perk
,
O. Y.
,
Erbil
,
S.
,
Demir
,
E.
,
Ekici
,
I. D.
,
Ekici
,
S.
,
Kosar
,
A.
, and
Gozuacik
,
D.
,
2013
, “
Hydrodynamic Cavitation Kills Prostate Cells and Ablates Benign Prostatic Hyperplasia Tissue
,”
Exp. Biol. Med.
,
238
(
11
), pp.
1242
1250
.10.1177/1535370213503273
9.
Perk
,
O. Y.
,
Sesen
,
M.
,
Gozuacik
,
D.
, and
Kosar
,
A.
,
2012
, “
Kidney Stone Erosion by Hydrodynamic Cavitation and Consequent Kidney Stone Treatment
,”
Ann. Biomed. Eng.
,
40
(
9
), pp.
1895
1902
.10.1007/s10439-012-0559-7
10.
Lingeman
,
J. E.
,
McAteer
,
J. A.
,
Gnessin
,
E.
, and
Evan
,
A. P.
,
2009
, “
Shock Wave Lithotripsy: Advances in Technology and Technique
,”
Nat. Rev. Urol.
,
6
(
12
), pp.
660
670
.10.1038/nrurol.2009.216
11.
Weaver
,
J.
, and
Monga
,
M.
,
2014
, “
Extracorporeal Shockwave Lithotripsy for Upper Tract Urolithiasis
,”
Curr. Opin. Urol.
,
24
(
2
), pp.
168
172
.10.1097/MOU.0000000000000024
12.
Duryea
,
A. P.
,
Roberts
,
W. W.
,
Cain
,
C. A.
, and
Hall
,
T. L.
,
2013
, “
Controlled Cavitation to Augment SWL Stone Comminution: Mechanistic Insights In Vitro
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
60
(
2
), pp.
301
309
.10.1109/TUFFC.2013.2566
13.
Duryea
,
A. P.
,
Roberts
,
W. W.
,
Cain
,
C. A.
,
Tamaddoni
,
H. A.
, and
Hall
,
T. L.
,
2014
, “
Acoustic Bubble Removal to Enhance SWL Efficacy at High Shock Rate: An In Vitro Study
,”
J. Endourol.
,
28
(
1
), pp.
90
95
.10.1089/end.2013.0313
14.
Dretler
,
S.
,
Pfister
,
R.
,
Newhouse
,
J.
, and
Prien
,
E.
,
1984
, “
Percutaneous Catheter Dissolution of Cystine Calculi
,”
J. Urol.
,
131
(
2
), pp.
216
219
.
15.
Klee
,
L. W.
,
Brito
,
C. G.
, and
Lingeman
,
J. E.
,
1991
, “
The Clinical Implications of Brushite Calculi
,”
J. Urol.
,
145
(
4
), pp.
715
718
.
16.
Zhong
,
P.
,
Chuong
,
C. J.
, and
Preminger
,
G. M.
,
1993
, “
Propagation of Shock Waves in Elastic Solids Caused by Cavitation Microjet Impact. II: Application in Extracorporeal Shock Wave Lithotripsy
,”
J. Acoust. Soc. Am.
,
94
(
1
), pp.
29
36
.10.1121/1.407088
17.
Zhong
,
P.
,
Chuong
,
C. J.
, and
Preminger
,
G. M.
,
1993
, “
Characterization of Fracture Toughness of Renal Calculi Using a Microindentation Technique
,”
J. Mater. Sci. Lett.
,
12
(
18
), pp.
1460
1462
.10.1007/BF00591608
18.
Singh
,
I.
,
Gupta
,
N. P.
,
Hemal
,
A. K.
,
Dogra
,
P. N.
,
Ansari
,
M. S.
,
Seth
,
A.
, and
Aron
,
M.
,
2001
, “
Impact of Power Index, Hydroureteronephrosis, Stone Size, and Composition of the Efficacy of In Situ Boosted ESWL for Primary Proximal Ureteral Calculi
,”
Urology
,
58
(
1
), pp.
16
22
.10.1016/S0090-4295(01)01088-3
19.
Coe
,
F. L.
,
Evan
,
A. P.
, and
Worcester
,
E.
,
2005
, “
Kidney Stone Disease
,”
J. Clin. Invest.
,
115
(
10
), pp.
2598
2608
.10.1172/JCI26662
20.
Kim
,
S. C.
,
Matlaga
,
B. R.
,
Tinmouth
,
W. W.
,
Kuo
,
R. L.
,
Evan
,
A. P.
,
McAteer
,
J. A.
,
Williams
,
J. C.
, Jr.
, and
Lingeman
,
J. E.
,
2007
, “
In Vitro Assessment of a Novel Dual Probe Ultrasonic Intracorporeal Lithotriptor
,”
J. Urol.
,
177
(
4
), pp.
1363
1365
.10.1016/j.juro.2006.11.033
21.
Kim
,
S. C.
,
Burns
,
E. K.
,
Lingeman
,
J. E.
,
Paterson
,
R. F.
,
McAteer
,
J. A.
, and
Williams
,
J. C.
, Jr
.,
2007
, “
Cystine Calculi: Correlation of CT-Visible Structure, CT Number, and Stone Morphology With Fragmentation by Shock Wave Lithotripsy
,”
Urol. Res.
,
35
(
6
), pp.
319
324
.10.1007/s00240-007-0117-1
22.
Evan
,
A. P.
,
Lynn
,
R. W.
,
Bret
,
A. C.
,
Trout
,
A.
, and
Lingeman
,
J. E.
,
1996
, “
Renal Injury Induced by Clinical Doses of Shock Waves
,”
J. Acoust. Soc. Am.
,
99
(4), p.
2510
.10.1121/1.415707
23.
McAteer
,
J. A.
, and
Evan
,
A. P.
,
2008
, “
The Acute and Long-Term Adverse Effects of Shock Wave Lithotripsy
,”
Semin. Nephrol.
,
28
(
2
), pp.
200
213
.10.1016/j.semnephrol.2008.01.003
24.
Lingeman
,
J. E.
,
Woods
,
J.
,
Toth
,
P. D.
,
Evan
,
A. P.
, and
McAteer
,
J. A.
,
1989
, “
The Role of Lithotripsy and Its Side Effects
,”
J. Urol.
,
141
(
3 Pt 2
), pp.
793
797
.
25.
Evan
,
A. P.
,
Willis
,
L. R.
,
Lingeman
,
J. E.
, and
McAteer
,
J. A.
,
1998
, “
Renal Trauma and the Risk of Long-Term Complications in Shock Wave Lithotripsy
,”
Nephron
,
78
(
1
), pp.
1
8
.10.1159/000044874
26.
Evan
,
A. P.
,
Willis
,
L. R.
,
2007
, “
Extracorporeal Shock Wave Lithotripsy: Complications
,”
Smith’s Textbook on Endourology
,
A. D.
Smith
,
G. H.
Badlani
,
D. H.
Bagley
,
R. V.
Clayman
, and
S. G.
Docimo
, eds.,
Decker
,
Hamilton, ON, Canada
, pp.
353
365
.
27.
Honeck
,
P.
,
Wendt-Nordahl
,
G.
,
Bolenz
,
C.
,
Peters
,
T.
,
Weiss
,
C.
,
Alken
,
P.
,
Michel
,
M. S.
, and
Häcker
,
A.
,
2008
, “
Hemostatic Properties of Four Devices for Partial Nephrectomy: A Comparative Ex Vivo Study
,”
J. Endourol.
,
22
(
5
), pp.
1071
1076
.10.1089/end.2007.0236
28.
Lo
,
C. M.
, and
Fan
,
S. T.
,
1991
, “
Percutaneous Transhepatic Choledochoscopic Electrohydraulic Lithotripsy for Common Bile Duct Stones: Experience in Four High-Risk Patients
,”
Am. J. Gastroenterol.
,
86
(
7
), pp.
840
842
.
29.
Bilen
,
H.
, and
Unel
,
M.
,
2008
, “
Micromanipulation Using a Microassembly Workstation With Vision and Force Sensing
,” 4th International Conference on Intelligent Computing (
ICIC 2008
), Shanghai, China, Sept. 15–18, Vol. 5226, Vol. 5226, pp.
1164
1172
.10.1007/978-3-540-87442-3_144
30.
Bilen
,
H.
,
Hocaoglu
,
M. A.
,
Baran
,
E.
,
Unel
,
M.
, and
Gozuacik
,
D.
,
2009
, “
Novel Parameter Estimation Schemes in Microsystems
,”
IEEE International Conference on Robotics and Automotion
(
ICRA’09
), Kobe, Japan, May 12–17, pp.
2394
2399
.10.1109/ROBOT.2009.5152218
31.
Bilen
,
H.
,
Hocaoglu
,
M.
,
Unel
,
M.
, and
Sabanovic
,
A.
,
2012
, “
Developing Robust Vision Modules for Microsystems Applications
,”
Mach. Vision Appl.
,
23
(
1
), pp.
25
42
.10.1007/s00138-010-0267-y
32.
Heimbach
,
D.
,
Munver
,
R.
,
Zhong
,
P.
,
Jacobs
,
J.
,
Hesse
,
A.
,
Mülles
,
S. C.
, and
Preminger
,
G. M.
,
2000
, “
Acoustic and Mechanical Properties of Artificial Stones in Comparison to Natural Kidney Stones
,”
J. Urol.
,
164
(
2
), pp.
537
544
.10.1016/S0022-5347(05)67419-8
33.
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Cavitation in Flow Through a Micro-Orifice Inside a Silicon Microchannel
,”
Phys. Fluids
,
17
(
1
), p.
013601
.10.1063/1.1827602
34.
Acer
,
M.
, and
Şabanoviç
,
A.
,
2013
, “
Micro Position Control of a 3-RRR Compliant Mechanism
,”
IEEE International Conference on Industrial Technology
(
ICIT 2013
), Cape Town, South Africa, Feb. 25–28, pp.
118
123
.10.1109/ICIT.2013.6505658
35.
Mishra
,
C.
, and
Peles
,
Y.
,
2006
, “
Development of Cavitation in Refrigerant (R-123) Flow Inside Rudimentary Microfluidic Systems
,”
J. Microelectromech. Syst.
,
15
(
5
), pp.
1319
1329
.10.1109/JMEMS.2006.872230
36.
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Size Scale Effects on Cavitating Flows Through Microorifices Entrenched in Rectangular Microchannels
,”
J. Microelectromech. Syst.
,
14
(
5
), pp.
987
999
.10.1109/JMEMS.2005.851800
37.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
London
.
38.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flow
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.