Needle insertion technique is a common minimally invasive operation, which has received a great deal of interest recently among physicians. This innovative technique is being used in many diagnoses and interventions inside the human body; among them are drug delivery, thermal ablation, tissue biopsy, and brachytherapy. The success of such procedures highly depends on the accuracy of needle tip placement and its navigation within the tissue. As of today, tremendous efforts have been made to investigate the involved factors that potentially can benefit the procedure.

Many researchers have proposed diverse types of needle designs to improve the needle tip placement. Using an asymmetric bevel-tip is the most common method, which greatly enhances the needle's maneuverability [1]. Several studies demonstrated that the needle naturally bends due to the unbalanced forces acting on its tip. Some researchers [2] used different speeds for insertion...

References

References
1.
Engh
,
J. A.
,
Podnar
,
G.
,
Kondziolka
,
D.
, and
Riviere
,
C. N.
,
2006
, “
Toward Effective Needle Steering in Brain Tissue
,”
28th Annual International Conference of IEEE Engineering in Medicine and Biology Society
(
EMBS '06
), New York, Aug. 30–Sept. 3, pp.
559
562
.10.1109/IEMBS.2006.260167
2.
Crouch
,
J. R.
,
Schneider
,
C. M.
,
Wainer
,
J.
, and
Okamura
,
A. M.
,
2005
, “
A Velocity-Dependent Model for Needle Insertion in Soft Tissue
,”
Med. Image Comput. Comput. Assisted Intervention
,
8
(
Pt 2
), pp.
624
632
.10.1007/11566489_77
3.
Konh
,
B.
,
Datla
,
N. V.
, and
Hutapea
,
P.
,
2015
, “
Feasibility of SMA Wire Actuation for an Active Steerable Cannula
,”
ASME J. Med. Devices
,
9
(
2
), p.
021002
.10.1115/1.4029557
4.
Honarvar
,
M.
,
Konh
,
B.
,
Datla
,
N. V.
,
Devlin
,
S.
, and
Hutapea
,
P.
,
2013
, “
Size Effect on the Critical Stress of Nitinol Wires
,”
ASME
Paper No. SMASIS2013-3157.10.1115/SMASIS2013-3157
5.
Datla
,
N. V.
,
Honarvar
,
M.
,
Nguyen
,
T. M.
,
Konh
,
B.
,
Darvish
,
K.
,
Yu
,
Y.
,
Dicker
,
A. P.
,
Podder
,
T. K.
, and
Hutapea
,
P.
,
2012
, “
Towards a Nitinol Actuator for an Active Surgical Needle
,”
ASME
Paper No. SMASIS2012-8204.10.1115/SMASIS2012-8204
6.
Honarvar
,
M.
,
Datla
,
N. V.
,
Konh
,
B.
,
Podder
,
T. K.
,
Dicker
,
A. P.
,
Yu
,
Y.
, and
Hutapea
,
P.
,
2014
, “
Study of Unrecovered Strain and Critical Stresses in One-Way Shape Memory Nitinol
,”
Mater. Eng. Perform.
,
23
(
8
), pp.
2885
2893
.10.1007/s11665-014-1077-6
7.
Konh
,
B.
,
Honarvar
,
M.
, and
Hutapea
,
P.
,
2013
, “
Application of SMA Wire for an Active Steerable Cannula
,”
ASME
Paper No. SMASIS2013-3142.10.1115/SMASIS2013-3142
8.
Datla
,
N. V.
,
Konh
,
B.
, and
Hutapea
,
P.
,
2014
, “
Studies With SMA Actuated Needle for Steering Within Tissue
,”
ASME
Paper No. SMASIS2014-7523.10.1115/SMASIS2014-7523
9.
Konh
,
B.
, and
Hutapea
,
P.
,
2013
, “
Finite Element Simulation of an Active Surgical Needle for Prostate Brachytherapy
,”
ASME
Paper No. FMD2013-16049.10.1115/FMD2013-16049
10.
Konh
,
B.
,
Datla
,
N. V.
, and
Hutapea
,
P.
,
2014
, “
Analysis Driven Design Optimization of SMA Based Steerable Active Needle
,”
ASME
Paper No. SMASIS2014-7522.10.1115/SMASIS2014-7522
11.
Konh
,
B.
,
Honarvar
,
M.
, and
Hutapea
,
P.
,
2014
, “
Design Optimization Study of a Shape Memory Alloy Active Needle for Biomedical Applications
,”
J. Med. Eng. Phys.
,
37
(
5
), pp.
469
477
.10.1016/j.medengphy.2015.02.013
12.
Datla
,
N. V.
,
Konh
,
B.
,
Honarvar
,
M.
,
Podder
,
T. K.
,
Dicker
,
A. P.
,
Yu
,
Y.
, and
Hutapea
,
P.
,
2013
, “
A Model to Predict Deflection of Bevel-Tipped Active Needle Advancing in Soft Tissue
,”
Med. Eng. Phys.
,
36
(
3
), pp.
258
293
.10.1016/j.medengphy.2013.11.006
13.
Datla
,
N. V.
,
Konh
,
B.
,
Koo
,
J.
,
Daniel
,
W. C.
,
Yu
,
Y.
,
Dicker
,
A. P.
,
Podder
,
T. K.
,
Darvish
,
K.
, and
Hutapea
,
P.
,
2014
, “
Polyacrylamide Phantom for Self-Actuating Needle–Tissue Interaction Studies
,”
Med. Eng. Phys.
,
36
(
1
), pp.
140
145
.10.1016/j.medengphy.2013.07.004
You do not currently have access to this content.