Needle insertion is used in many diagnostic and therapeutic percutaneous medical procedures such as brachytherapy, thermal ablations, and breast biopsy. Insufficient accuracy using conventional surgical cannulas motivated researchers to provide actuation forces to the cannula's body for compensating the possible errors of surgeons/physicians. In this study, we present the feasibility of using shape memory alloy (SMA) wires as actuators for an active steerable surgical cannula. A three-dimensional (3D) finite element (FE) model of the active steerable cannula was developed to demonstrate the feasibility of using SMA wires as actuators to bend the surgical cannula. The material characteristics of SMAs were simulated by defining multilinear elastic isothermal stress–strain curves that were generated through a matlab code based on the Brinson model. Rigorous experiments with SMA wires were done to determine the material properties as well as to show the capability of the code to predict a stabilized SMA transformation behavior with sufficient accuracy. In the FE simulation, birth and death method was used to achieve the prestrain condition on SMA wire prior to actuation. This numerical simulation was validated with cannula deflection experiments with developed prototypes of the active cannula. Several design parameters affecting the cannula's deflection such as the cannula's Young's modulus, the SMA's prestrain, and its offset from the neutral axis of the cannula were studied using the FE model. Real-time experiments with different prototypes showed that the quickest response and the maximum deflection were achieved by the cannula with two sections of actuation compared to a single section of actuation. The numerical and experimental studies showed that a highly maneuverable active cannulas can be achieved using the actuation of multiple SMA wires in series.

References

References
1.
Kronreif
,
G.
,
Ptacek
,
W.
,
Kornfeld
,
M.
, and
Furst
,
M.
,
2012
, “
Evaluation of Robotic Assistance in Neurosurgical Applications
,”
J. Rob. Surg.
,
6
(
1
), pp.
33
39
.10.1007/s11701-011-0327-y
2.
Patil
,
S.
,
Burgner
,
J.
,
Webster
,
R. J.
, III
, and
Alterovitz
,
R.
,
2014
, “
Needle Steering in 3-D Via Rapid Replanning
,”
IEEE Trans. Rob.
30
(
4
), pp.
853
864
.10.1109/TRO.2014.2307633
3.
Swaney
,
P. J.
,
Burgner
,
J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
, III
,
2013
, “
A Flexure-Based Steerable Needle: High Curvature With Reduced Tissue Damage
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
906
909
.10.1109/TBME.2012.2230001
4.
Webster
,
R. J.
, III
,
Okamura
,
A. M.
, and
Cowan
,
N. J.
,
2006
, “
Toward Active Cannulas: Miniature Snake-Like Surgical Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2006
), Beijing, China, Oct. 9–15, pp.
2857
2863
.10.1109/IROS.2006.282073
5.
Roesthuis
,
R. J.
,
Kemp
,
M.
,
van den Dobbelsteen
,
J. J.
, and
Misra
,
S.
,
2014
, “
Three-Dimensional Needle Shape Reconstruction Using an Array of Fiber Bragg Grating Sensors
,”
IEEE/ASME Trans. Mechatron.
,
19
(
4
), pp.
1115
1126
.10.1109/TMECH.2013.2269836
6.
Henken
,
K. R.
,
Dankelman
,
J.
,
van den Dobbelsteen
,
J. J.
,
Cheng
,
L. K.
, and
van der Heiden
,
M. S.
,
2014
, “
Error Analysis of FBG-Based Shape Sensors for Medical Needle Tracking
,”
IEEE/ASME Trans. Mechatron.
,
19
(
5
), pp.
1523
1531
.10.1109/TMECH.2013.2287764
7.
Podder
,
T. K.
,
Dicker
,
A. P.
,
Hutapea
,
P.
, and
Yu
,
Y.
,
2012
, “
A Novel Curvilinear Approach for Prostate Seed Implantation
,”
J. Med. Phys.
,
39
(
4
), pp.
1887
1892
.10.1118/1.3694110
8.
Stock
,
R. G.
,
Stone
,
N. N.
,
Lo
,
Y. C.
,
Malhado
,
N.
,
Kao
,
J.
, and
DeWyngaert
,
J. K.
,
2000
, “
Postimplant Dosimetry for 125I Prostate Implants: Definitions and Factors Affecting Outcome
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
48
(
3
), pp.
899
906
.10.1016/S0360-3016(00)00707-0
9.
Datla
,
N. V.
,
Honarvar
,
M.
,
Nguyen
,
T. M.
,
Konh
,
B.
,
Darvish
,
K.
,
Yu
,
Y.
,
Dicker
,
A. P.
,
Podder
,
T. K.
, and
Hutapea
,
P.
,
2012
, “
Towards a Nitinol Actuator for an Active Surgical Needle
,”
ASME
Paper No. SMASIS2012-8204. 10.1115/SMASIS2012-8204
10.
Konh
,
B.
,
Honarvar
,
M.
, and
Hutapea
,
P.
,
2013
, “
Application of SMA Wire for an Active Steerable Cannula
,”
ASME
Paper No. SMASIS2013-3142. 10.1115/SMASIS2013-3142
11.
Honarvar
,
M.
,
Datla
,
N. V.
,
Konh
,
B.
,
Podder
,
T. K.
,
Dicker
,
A. P.
,
Yu
,
Y.
, and
Hutapea
,
P.
,
2014
, “
Study of Unrecovered Strain and Critical Stresses in One-Way Shape Memory Nitinol
,”
J. Mater. Eng. Perform.
,
23
(
8
), pp.
2885
2893
.10.1007/s11665-014-1077-6
12.
Tang
,
L.
,
Chen
,
Y.
, and
He
,
X.
,
2007
, “
Magnetic Force Aided Compliant Needle Navigation and Needle Performance Analysis
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO 2007
), Sanya, China, Dec. 15–18, pp.
612
616
.10.1109/ROBIO.2007.4522232
13.
Ayvali
,
E.
,
Liang
,
C. P.
,
Ho
,
M.
,
Chen
,
Y.
, and
Desai
,
J. P.
,
2012
, “
Towards a Discretely Actuated Steerable Cannula for Diagnostic and Therapeutic Procedures
,”
Int. J. Rob. Res.
,
31
(
5
), pp.
588
603
.10.1177/0278364912442429
14.
Ryu
,
S. C.
,
Quek
,
Z. F.
,
Renaud
,
P.
,
Black
,
R. J.
,
Daniel
,
B. L.
, and
Cutkosky
,
M. R.
,
2012
, “
An Optical Actuation System and Curvature Sensor for a MR-Compatible Active Needle
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp.
1589
1594
.10.1109/ICRA.2012.6224964
15.
Crews
,
J. H.
, and
Buckner
,
G. D.
,
2012
, “
Design Optimization of a Shape Memory Alloy-Actuated Robotic Catheter
,”
J. Intell. Mater. Syst. Struct.
,
23
(
5
), pp.
545
562
.10.1177/1045389X12436738
16.
Heintze
,
O.
,
Seelecke
,
S.
, and
Bueskens
,
C.
,
2003
, “
Modeling and Optimal Control of Microscale SMA Actuators
,”
Proc. SPIE
,
5049
, pp.
495
505
.10.1117/12.484065
17.
Datla
,
N. V.
,
Konh
,
B.
,
Honarvar
,
M.
,
Podder
,
T. K.
,
Dicker
,
A. P.
,
Yu
,
Y.
, and
Hutapea
,
P.
,
2013
, “
A Model to Predict Deflection of Bevel-Tipped Active Needle Advancing in Soft Tissue
,”
Med. Eng. Phys.
,
36
(
3
), pp.
258
293
.10.1016/j.medengphy.2013.11.006
18.
Konh
,
B.
,
Datla
,
N. V.
, and
Hutapea
,
P.
,
2014
, “
Analysis Driven Design Optimization of SMA Based Steerable Active Needle
,”
ASME
Paper No. SMASIS2014-7522. 10.1115/SMASIS2014-7522
19.
Shu
,
S. G.
,
Lagoudas
,
D. C.
,
Hughes
,
D.
, and
Wen
,
J. T.
,
1997
, “
Modeling of a Flexible Beam Actuated by Shape Memory Alloy Wires
,”
J. Smart Mater. Struct.
,
6
(
3
), pp.
265
277
.10.1088/0964-1726/6/3/005
20.
Atkinson
,
G.
,
Kirkpatrick
,
K.
,
Harti
,
D.
, and
Valasek
,
J.
,
2012
, “
Application of SMA Actuators to Spacesuit Glove Mobility
,”
ASME
Paper No. SMASIS2012-8068. 10.1115/SMASIS2012-8068
21.
Terriault
,
P.
,
Viens
,
F.
, and
Brailovski
,
V.
,
2006
, “
Non-Isothermal Finite Element Modeling of a Shape Memory Alloy Actuator Using ANSYS
,”
Comput. Mater. Sci.
,
36
(
4
), pp.
397
410
.10.1016/j.commatsci.2005.05.010
22.
Elahinia
,
M. H.
,
Hashemi
,
M.
,
Tabesh
,
M.
, and
Bhaduri
,
S. B.
,
2012
, “
Manufacturing and Processing of NiTi Implants: A Review
,”
Prog. Mater. Sci.
,
57
(
5
), pp.
911
946
.10.1016/j.pmatsci.2011.11.001
23.
Jacobs
,
K.
,
Harper
,
M.
,
Roth
,
B.
,
Meyer
,
E.
, and
Hutapea
,
P.
,
2009
, “
Development of a Proof-of-Concept Aircraft Smart Control System
,”
Aeronaut. J.
,
113
(
1147
), pp.
587
590
.10.1115/SMASIS2009-1356
24.
Luo
,
Y.
, and
Hutapea
,
P.
,
2009
, “
Design of a Bone Transport Device Using Smart Material Actuators
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091005
.10.1115/1.3160314
25.
Tanaka
,
K.
,
Kobayashi
,
S.
, and
Sato
,
Y.
,
1986
, “
Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys
,”
Int. J. Plast.
,
2
(
1
), pp.
59
72
.10.1016/0749-6419(86)90016-1
26.
Liang
,
C.
, and
Rogers
,
C. A.
,
1990
, “
One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials
,”
J. Intell. Mater. Syst. Struct.
,
1
(
2
), pp.
207
234
.10.1177/1045389X9000100205
27.
Lagoudas
,
D. C.
,
2008
,
Shape Memory Alloys: Modeling and Engineering Applications
, Vol.
1
,
Springer
,
New York
.
28.
Eaton-Evans
,
J.
,
Dulieu-Barton
,
J. M.
,
Little
,
E. G.
, and
Brown
,
I. A.
,
2007
, “
Observations During Mechanical Testing of Nitinol
,”
J. Mech. Eng. Sci.
,
222
(
2
), pp.
97
106
.10.1243/09544062JMES797
29.
Boyd
,
J. G.
, and
Lagoudas
,
D. C.
,
1996
, “
A Thermodynamic Constitutive Model for the Shape Memory Materials. Part I. The Monolithic Shape Memory Alloys
,”
Int. J. Plast.
,
12
(
6
), pp.
805
842
.10.1016/S0749-6419(96)00030-7
30.
Brinson
,
L. C.
,
1993
, “
One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation With Non-Constant Material Functions and Redefined Martensite Internal Variable
,”
J. Intell. Mater. Syst. Struct.
,
4
(
2
), pp.
229
242
.10.1177/1045389X9300400213
31.
Prahlad
,
H.
, and
Chopra
,
I.
,
2001
, “
Comparative Evaluation of Shape Memory Alloy Constitutive Models With Experimental Data
,”
J. Intell. Mater. Syst. Struct.
,
12
(
6
), pp.
383
395
.10.1106/104538902022599
32.
Konh
,
B.
, and
Hutapea
,
P.
,
2013
, “
Finite Element Simulation of an Active Surgical Needle for Prostate Brachytherapy
,”
ASME
Paper No. FMD2013-16049. 10.1115/FMD2013-16049
33.
Honarvar
,
M.
,
Konh
,
B.
,
Datla
,
N. V.
,
Devlin
,
S.
, and
Hutapea
,
P.
,
2013
, “
Size Effect on the Critical Stress of Nitinol Wires
,”
ASME
Paper No. SMASIS2013-3157. 10.1115/SMASIS2013-3157
34.
Konh
,
B.
,
Honarvar
,
M.
, and
Hutapea
,
P.
,
2014
, “
Design Optimization Study of a Shape Memory Alloy Active Needle for Biomedical Applications
,”
J. Med. Eng. Phys.
(in press).
35.
Terriault
,
P.
, and
Brailovski
,
V.
,
2011
, “
Modeling of Shape Memory Alloy Actuators Using Likhachev's Formulation
,”
J. Intell. Mater. Syst. Struct.
,
22
(
4
), pp.
353
368
.10.1177/1045389X11401450
36.
Orlando
,
F.
,
Joseph
,
M.
,
Kumar
,
M.
,
Franz
,
K.
,
Konh
,
B.
,
Hutapea
,
P.
,
Zhao
,
Y.
,
Dicker
,
A.
,
Yu
,
Y.
, and
Podder
,
T. K.
,
2014
, “
Control of Shape Memory Alloy Actuated Flexible Needle Using Multimodal Sensory Feedbacks
,”
3rd International Conference on Control, Robotics and Informations (ICCRI)
, Hong Kong, Dec. 26–28.
37.
Ryu
,
S. C.
,
Renaud
,
P.
,
Black
,
R. J.
,
Daniel
,
B. L.
, and
Cutkosky
,
M. R.
,
2011
, “
Feasibility Study of an Optically Actuated MR-Compatible Active Needle
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
2564
2569
.10.1109/IROS.2011.6094945
38.
Datla
,
N. V.
,
Konh
,
B.
, and
Hutapea
,
P.
,
2014
, “
A Flexible Active Needle for Steering in Soft Tissues
,”
40th Annual Northeast Bioengineering Conference
(
NEBEC
), Boston, MA, Apr. 25–27.10.1109/NEBEC.2014.6972769
39.
Datla
,
N. V.
,
Konh
,
B.
, and
Hutapea
,
P.
,
2014
, “
Studies With SMA Actuated Needle for Steering Within Tissue
,”
ASME
Paper No. SMASIS2014-7523. 10.1115/SMASIS2014-7523
40.
McDannold
,
N. J.
,
King
,
R. L.
,
Jolesz
,
F. A.
, and
Hynynen
,
K. H.
,
2000
, “
Usefulness of MR Imaging-Derived Thermometry and Dosimetry in Determining the Threshold for Tissue Damage Induced by Thermal Surgery in Rabbits
,”
Radiology
,
216
(
2
), pp.
517
523
.10.1148/radiology.216.2.r00au42517
41.
Datla
,
N. V.
,
Konh
,
B.
,
Koo
,
J.
,
Daniel
,
W. C.
,
Yu
,
Y.
,
Dicker
,
A. P.
,
Podder
,
T. K.
,
Darvish
,
K.
, and
Hutapea
,
P.
,
2014
, “
Polyacrylamide Phantom for Self-Actuating Needle-Tissue Interaction Studies
,”
Med. Eng. Phys.
,
36
(
1
), pp.
140
145
.10.1016/j.medengphy.2013.07.004
42.
Myllymaa
,
S.
,
Myllymaa
,
K.
,
Korhonen
,
H.
,
Lammi
,
M. J.
,
Tiitu
,
V.
, and
Lappalainen
,
R.
,
2010
, “
Surface Characterization and In Vitro Biocompatibility Assessment of Photosensitive Polyimide Films
,”
Colloids Surf.
, B,
76
(
2
), pp.
505
511
.10.1016/j.colsurfb.2009.12.011
43.
Shah
,
T. M.
, and
Gordon
,
R. E.
,
2003
, “
Polyimide Coated Shape-Memory Material and Method of Making Same
,” U.S. Patent No. 6,509,094 B1.
44.
Allen
,
D. M.
,
Leong
,
T.
,
Lim
,
S. H.
, and
Kohl
,
M.
,
1997
, “
Photofabrication of the Third Dimension of NiTi Shape Memory Alloy Microactuators
,”
Proc. SPIE
,
3225
, pp.
126
132
.10.1117/12.284549
You do not currently have access to this content.