We introduce a flexible smart skin sensor that can conform to the surface of a mannequin, prosthetic, or medical device. It senses contact and localizes contact position continuously over its entire surface. This can allow, for example, medical mannequin simulators to assess accurate placement of fingers or tools during procedures such as localizing anatomical landmarks or correctly localizing breast tumors during exams.

Prior art has also considered smart skins: flexible materials embedded with force or position sensors, which can be molded to different geometries. Several attempts at smart skins have utilized arrays of rigid sensors embedded in flexible media. Typical approaches use piezoresistive sensors [1] or capacitive force sensors [2]. Rogers et al. implement novel microfabrication techniques in silicones (e.g., Ref. [3]) for stretchable circuits. These approaches have one or more drawbacks. Most are cost prohibitive for medical training...

References

References
1.
Shan
,
J. H.
,
Mei
,
T.
,
Sun
,
L.
,
Kong
,
D. Y.
,
Zhang
,
Z. Y.
,
Ni
,
L.
,
Meng
,
M.
, and
Chu
,
J. R.
,
2005
, “
The Design and Fabrication of a Flexible Three-Dimensional Force Sensor Skin
,”
IEEE International Conference on Intelligent Robots and Systems
(
IROS 2005
), Edmonton, Canada, Aug. 2–6, pp.
1818
1823
.10.1109/IROS.2005.1545265
2.
Ulmen
,
J.
, and
Cutkosky
,
M.
,
2010
, “
A Robust, Low-Cost and Low-Noise Artificial Skin for Human-Friendly Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
4836
4841
.10.1109/ROBOT.2010.5509295
3.
Kim
,
D.-H.
,
Ghaffari
,
R.
,
Lu
,
N.
,
Wang
,
S.
,
Lee
,
S. P.
,
Keum
,
H.
,
D'Angelo
,
R.
,
Klinker
,
L.
,
Su
,
Y.
,
Lu
,
C.
,
Kim
,
Y.-S.
,
Ameen
,
A.
,
Li
,
Y.
,
Zhang
,
Y.
,
de Graff
,
B.
,
Hsu
,
Y.-Y.
,
Liu
,
Z.
,
Ruskin
,
J.
,
Xu
,
L.
,
Lu
,
C.
,
Omenetto
,
F. G.
,
Huang
,
Y.
,
Mansour
,
M.
,
Slepian
,
M. J.
, and
Rogers
,
J. A.
,
2012
, “
Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy
,”
Proc. Natl. Acad. Sci.
,
109
(
49
), pp.
19910
19915
10.1073/phas.1205923109.10.1073/pnas.1205923109
4.
Walz
,
R.
,
Meier
,
Z.
,
Winek
,
M.
, and
Kowalewski
,
T. M.
,
2014
, “
Medical Simulators for Developing Countries Via Low-Cost Two-Dimensional Position Tracking
,”
ASME J. Med. Devices
,
8
(
3
), p. 030949.10.1115/1.4027116
You do not currently have access to this content.