Accurate quantitative evaluation of shear stress-related red blood cell damage (hemolysis) can be used to improve biocompatibility of mechanical cardiac assist devices. Ventricular assist devices (VAD) are used to improve cardiac heart function by acting as a booster pump [1]. Most modern VADs have a rotating impeller and the combination of high rotational speeds and small clearances causes substantial stress on the red blood cells.

Computational fluid dynamics (CFD) is often utilized to estimate fluid flow and shear stress in complex three-dimensional geometries. However, the accuracy of these models is not substantially reliable [2]. After determining stress and exposure time on erythrocytes, hemolysis can be evaluated using a power law correlation based on empirical data from a simple Couette viscometer [3]. The two blood damage models widely used are Giersiepen et al. [4] and Heuser and Opitz...

References

References
1.
Behbahani
,
M.
,
Behr
,
M.
,
Hormes
,
M.
,
Steinseifer
,
U.
,
Arora
,
D.
,
Coronado
,
O.
, and
Pasquali
,
M.
,
2009
, “
A Review of Computational Fluid Dynamics Analysis of Blood Pumps
,”
Eur. J. Appl. Math.
,
20
(
4
), pp.
363
397
.10.1017/S0956792509007839
2.
Stewart
,
S. F. C.
,
Paterson
,
E. G.
,
Burgreen
,
G. W.
,
Hariharan
,
P.
,
Giarra
,
M.
,
Reddy
,
V.
,
Day
,
S. W.
,
Manning
,
K B.
,
Deutsch
,
S.
,
Berman
,
M. R.
,
Berman
,
M. R.
,
Myers
,
M. R.
, and
Malinauskas
,
R. A.
,
2012
, “
Assessment of CFD Performance in Simulations of an Idealized Medical Device: Results of FDA's First Computational Interlaboratory Study
,”
Cardiovasc. Eng. Technol.
,
3
(
2
), pp.
139
160
.10.1007/s13239-012-0087-5
3.
Leverett
,
L. B.
,
Hellums
,
J. D.
,
Alfrey
,
C. P.
, and
Lynch
,
E. C.
,
1972
, “
Red Blood Cell Damage by Shear Stress
,”
Biophys. J.
,
12
(
3
), pp.
257
273
.10.1016/S0006-3495(72)86085-5
4.
Giersiepen
,
M.
,
Wurzinger
,
L.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses: In Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.http://europepmc.org/abstract/med/2365485
5.
Heuser
,
G.
, and
Opitz
,
R.
,
1980
, “
A Couette Viscometer for Short Time Shearing of Blood
,”
Biorheology
,
17
(
1–2
), pp.
17
24
.
6.
Chua
,
L. P.
,
Song
,
G.
,
Lim
,
T. M.
, and
Zhou
,
T.
,
2006
, “
Numerical Analysis of the Inner Flow Field of a Biocentrifugal Blood Pump
,”
Artif. Organs
,
30
(
6
), pp.
467
477
.10.1111/j.1525-1594.2006.00243.x
7.
Song
,
X.
,
Throckmorton
,
A. L.
,
Wood
,
H. G.
,
Antaki
,
J. F.
, and
Olsen
,
D. B.
,
2004
, “
Quantitative Evaluation of Blood Damage in a Centrifugal VAD by Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
410
418
.10.1115/1.1758259
8.
Apel
,
J.
,
Paul
,
R.
,
Klaus
,
S.
,
Siess
,
T.
, and
Reul
,
H.
,
2001
, “
Assessment of Hemolysis Related Quantities in a Microaxial Blood Pump by Computational Fluid Dynamics
,”
Artif. Organs
,
25
(
5
), pp.
341
347
.10.1046/j.1525-1594.2001.025005341.x
9.
Song
,
X.
,
Untaroiu
,
A.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
Throckmorton
,
A. L.
,
Day
,
S. W.
, and
Olsen
,
D. B.
,
2004
, “
Design and Transient Computational Fluid Dynamics Study of a Continuous Axial Flow Ventricular Assist Device
,”
ASAIO J.
,
50
(
3
), pp.
215
224
.10.1097/01.MAT.0000124954.69612.83
You do not currently have access to this content.