We reported a stretchable and flexible radiation-shielding film based on room-temperature liquid metal. Conceptual experiments showed that the liquid metal based printing technology can achieve an ultrathin flexible radiation-shielding film with a thickness of 0.3 mm. Moreover, the yield strength and ultimate strength of the liquid metal film appear much better than those of a conventional lead-particle-containing radiation-shielding material. In order to evaluate the radiation-shielding performance of the liquid metal material, X-ray radiation experiments to compare the liquid metal film and conventional lead-particle-based shielding material under different stretching conditions were performed. The results indicate that the liquid metal shielding film could achieve a certain radiation-shielding performance. Furthermore, because of the screen-printing properties of liquid metal, a low-cost X-ray mask method using a liquid metal selective radiation-shielding film was also studied, which could serve as a highly efficient and practical method for the medical X-ray shielding applications or semiconductor lithography industry.

References

References
1.
Antic
,
V.
,
Stankovic
,
K.
,
Vujisic
,
M.
, and
Osmokrovic
,
P.
,
2013
, “
Comparison of Various Methods for Designing the Shielding From Ionising Radiation at PET-CT Installations
,”
Radiat. Prot. Dosim.
,
154
(
2
), pp.
245
249
.10.1093/rpd/ncs173
2.
Li
,
Q. F.
,
Xing
,
Q. Z.
, and
Kong
,
C. C.
,
2009
, “
Physical Analysis of the Radiation Shielding for the Medical Accelerators
,”
J. Appl. Phys.
,
105
(
3
), p. 034911.10.1063/1.3078029
3.
McCaffrey
,
J. P.
,
Tessier
,
F.
, and
Shen
,
H.
,
2012
, “
Radiation Shielding Materials and Radiation Scatter Effects for Interventional Radiology (IR) Physicians
,”
Med. Phys.
,
39
(
7
), pp.
4537
4546
.10.1118/1.4730504
4.
Romanets
,
Y.
,
Bernardes
,
A. P.
,
Dorsival
,
A.
,
Goncalves
,
I. F.
,
Kadi
,
Y.
,
di Maria
,
S.
,
Vaz
,
P.
,
Vlachoudis
,
V.
, and
Vollaire
,
J.
,
2013
, “
Radiation Protection, Radiation Safety and Radiation Shielding Assessment of HIE-ISOLDE
,”
Radiat. Prot. Dosim.
,
155
(
3
), pp.
351
363
.10.1093/rpd/nct005
5.
Arranz-Andres
,
J.
,
Perez
,
E.
, and
Cerrada
,
M. L.
,
2014
, “
Lightweight Nanocomposites Based on Polypropylene and Aluminum Nanoparticles and Their Shielding Capability to Ionizing Radiation
,”
IEEE Trans. Nanotechnol.
,
13
(
3
), pp.
502
509
.10.1109/TNANO.2014.2307694
6.
Li
,
Z.
,
Nambiar
,
S.
,
Zheng
,
W.
, and
Yeow
,
J. T. W.
,
2013
, “
PDMS/Single-Walled Carbon Nanotube Composite for Proton Radiation Shielding in Space Applications
,”
Mater. Lett.
,
108
, pp.
79
83
.10.1016/j.matlet.2013.06.030
7.
Shin
,
J. W.
,
Lee
,
J. W.
,
Yu
,
S.
,
Baek
,
B. K.
,
Hong
,
J. P.
,
Seo
,
Y.
,
Kim
,
W. N.
,
Hong
,
S. M.
, and
Koo
,
C. M.
,
2014
, “
Polyethylene/Boron-Containing Composites for Radiation Shielding
,”
Thermochim. Acta.
,
585
, pp.
5
9
.10.1016/j.tca.2014.03.039
8.
McCaffrey
,
J. P.
,
Mainegra-Hing
,
E.
, and
Shen
,
H.
,
2009
, “
Optimizing Non-Pb Radiation Shielding Materials Using Bilayers
,”
Med. Phys.
,
36
(
12
), pp.
5586
5594
.10.1118/1.3260839
9.
Schlattl
,
H.
,
Zankl
,
M.
,
Eder
,
H.
, and
Hoeschen
,
C.
,
2007
, “
Shielding Properties of Lead-Free Protective Clothing and Their Impact on Radiation Doses
,”
Med. Phys.
,
34
(
11
), pp.
4270
4280
.10.1118/1.2786861
10.
Yue
,
K.
,
Luo
,
W. Y.
,
Dong
,
X. Q.
,
Wang
,
C. S.
,
Wu
,
G. H.
,
Jiang
,
M. W.
, and
Zha
,
Y. Z.
,
2009
, “
A New Lead-Free Radiation Shielding Material for Radiotherapy
,”
Radiat. Prot. Dosim.
,
133
(
4
), pp.
256
260
.10.1093/rpd/ncp053
11.
Zia
,
N.
,
Fakhar-E-Alam
,
M.
,
Atif
,
M.
,
Farooq
,
W. A.
,
Aziz
,
M. H.
,
Nadeem
,
A.
,
Shad
,
N. A.
,
Zia
,
U. H.
, and
Baig
,
M. R.
,
2014
, “
Designing of Sophisticated Automatic Lead Shielding to Reduce Radiation Dose of Tc-99m
,”
J. Optoelectron. Adv. Mater.
,
16
(
3–4
), pp.
443
450
.
12.
Zheng
,
Y.
,
He
,
Z. Z.
,
Gao
,
Y. X.
, and
Liu
,
J.
,
2013
, “
Direct Desktop Printed-Circuits-on-Paper Flexible Electronics
,”
Sci. Rep.
,
3
, p. 1786.10.1038/srep01786
13.
Zheng
,
Y.
,
He
,
Z. Z.
,
Yang
,
J.
, and
Liu
,
J.
,
2014
, “
Personal Electronics Printing Via Tapping Mode Composite Liquid Metal Ink Delivery and Adhesion Mechanism
,”
Sci. Rep.
,
4
, p. 4588.10.1038/srep04588
14.
Cheng
,
S.
,
Rydberg
,
A.
,
Hjort
,
K.
, and
Wu
,
Z. G.
,
2009
, “
Liquid Metal Stretchable Unbalanced Loop Antenna
,”
Appl. Phys. Lett.
,
94
(
14
), p. 144103.10.1063/1.3114381
15.
Kim
,
H. J.
,
Son
,
C.
, and
Ziaie
,
B.
,
2008
, “
A Multiaxial Stretchable Interconnect Using Liquid–Alloy-Filled Elastomeric Microchannels
,”
Appl. Phys. Lett.
,
92
(
1
), p. 011904.10.1063/1.2829595
16.
Zheng
,
Y.
,
Zhang
,
Q.
, and
Liu
,
J.
,
2013
, “
Pervasive Liquid Metal Based Direct Writing Electronics With Roller-Ball Pen
,”
AIP Adv.
,
3
(
11
), p. 112117.10.1063/1.4832220
You do not currently have access to this content.