A piezoelectric actuator was developed to operate safely deep inside the magnetic resonance imaging (MRI) machine bore. It is based on novel design that produces linear and rotary motion simultaneously increasing the accuracy of medical needle insertion procedures. The actuation method is based on the piezoworm principle, minimizing the actuator size, maximizing output force, and permitting micrometer scale insertion accuracy. Beryllium copper with high stiffness and strength was used in constructing the actuator to minimize image distortion and to achieve the targeted performance. Performance tests were performed by controlling the frequency input and observing the effect on speed, force and torque. The device achieved a linear speed of 5.4 mm/s and a rotary speed of 10.5 rpm.

References

References
1.
Chinzei
,
K.
,
Hata
,
N.
,
Jolesz
,
F. A.
, and
Kikinis
,
R.
,
2000
, “
MR Compatible Surgical Assist Robot: System Integration and Preliminary Feasibility Study
,”
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2000
(Lecture Notes in Computer Science), Vol.
1935
, MICCAI, Pittsburgh, PA, pp.
921
930
.
2.
Mashimo
,
T.
,
Toyama
,
S.
, and
Matsuda
,
H.
,
2008
, “
Development of Rotary-Linear Piezoelectric Actuator for MRI Compatible Manipulator
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2008
), Nice, France, Sept. 22–26, pp.
113
118
.10.1109/IROS.2008.4650623
3.
DiMaio
,
S. P.
,
Pieper
,
S.
,
Chinzei
,
K.
,
Hata
,
N.
,
Haker
,
S. J.
,
Kacher
,
D. F.
,
Fichtinger
,
G.
,
Tempany
,
C. M.
, and
Kikinis
,
R.
,
2007
, “
Robot-Assisted Needle Placement in Open MRI: System Architecture, Integration and Validation
,”
Comput. Aided Surg.
,
12
(
1
), pp.
15
24
.10.3109/10929080601168254
4.
Tsekos
,
N. V.
,
Khanicheh
,
A.
,
Christoforou
,
E.
, and
Mavroidis
,
C.
,
2007
, “
Magnetic Resonance–Compatible Robotic and Mechatronics Systems for Image-Guided Interventions and Rehabilitation: A Review Study
,”
Annu. Rev. Biomed. Eng.
,
9
, pp.
351
387
.10.1146/annurev.bioeng.9.121806.160642
5.
Abolhassani
,
N.
,
Patel
,
R.
, and
Ayazi
,
F.
,
2007
, “
Effects of Different Insertion Methods on Reducing Needle Deflection
,”
29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBS 2007
), Lyon, France, Aug. 22–26, pp.
491
494
.10.1109/IEMBS.2007.4352330
6.
Abolhassani
,
N.
,
Patel
,
R.
, and
Moallem
,
M.
,
2007
, “
Needle Insertion Into Soft Tissue: A Survey
,”
Med. Eng. Phys.
,
29
(
4
), pp.
413
431
.10.1016/j.medengphy.2006.07.003
7.
Abolhassani
,
N.
,
Patel
,
R.
, and
Ayazi
,
F.
,
2007
, “
Needle Control Along Desired Tracks in Robotic Prostate Brachytherapy
,”
IEEE International Conference on Systems Man and Cybernetics
(
SMC
), Montreal, Canada, Oct. 7–10, pp.
3361
3366
.10.1109/ICSMC.2007.4413819
8.
Yu
,
N.
, and
Riener
,
R.
,
2006
, “
Review on MR-Compatible Robotic Systems
,”
IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob 2006
), Pisa, Italy, Feb. 20–22, pp.
661
665
.10.1109/BIOROB.2006.1639165
9.
Graf
,
H.
,
Steidle
,
G.
, and
Schick
,
F.
,
2007
, “
Heating of Metallic Implants and Instruments Induced by Gradient Switching in a 1.5-Tesla Whole-Body Unit
,”
J. Magn. Reson. Imaging
,
26
(
5
), pp.
1328
1333
.10.1002/jmri.21157
10.
Konings
,
M. K.
,
Bartels
,
L. W.
,
Smits
,
H. F. M.
, and
Bakker
,
C. J. G.
,
2000
, “
Heating Around Intravascular Guidewires by Resonating RF Waves
,”
J. Magn. Reson. Imaging
,
12
(
1
), pp.
79
85
.10.1002/1522-2586(200007)12:1<79::AID-JMRI9>3.0.CO;2-T
11.
Buchli
,
R.
,
Boesiger
,
P.
, and
Meier
,
D.
,
1988
, “
Heating Effects of Metallic Implants by MRI Examinations
,”
Magn. Reson. Med.
,
7
(
3
), pp.
255
261
.10.1002/mrm.1910070302
12.
Podder
,
T. K.
,
Clark
,
D. P.
,
Fuller
,
D.
,
Sherman
,
J.
,
Ng
,
W. S.
,
Liao
,
L.
,
Rubens
,
D. J.
,
Strang
,
J. G.
,
Messing
,
E. M.
,
Zhang
,
Y. D.
, and
Yu
,
Y.
,
2005
, “
Effects of Velocity Modulation During Surgical Needle Insertion
,”
27th Annual Conference of the Engineering in Medicine and Biology Society
(
IEEE-EMBS 2005
), Shanghai, China, Sept. 1–4, pp.
5766
5770
.10.1109/IEMBS.2005.1615798
13.
Tsekos
,
N. V.
,
Özcan
,
A.
, and
Christoforou
,
E.
,
2005
, “
A Prototype Manipulator for Magnetic Resonance-Guided Interventions Inside Standard Cylindrical Magnetic Resonance Imaging Scanners
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
972
980
.10.1115/1.2049339
14.
Kim
,
D.
,
Kobayashi
,
E.
,
Dohi
,
T.
, and
Sakuma
,
I.
,
2002
, “
A New, Compact MR-Compatible Surgical Manipulator for Minimally Invasive Liver Surgery
,”
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2002
(Lecture Notes in Computer Science, Vol.
2488
), MICCAI, Pittsburgh, PA, pp.
99
106
.
15.
Tokuda
,
J.
,
Song
,
S.
,
Fischer
,
G. S.
,
Iordachita
,
I.
,
Seifabadi
,
R.
,
Cho
,
N.
,
Tuncali
,
K.
,
Fichtinger
,
G.
,
Tempany
,
C.
, and
Hata
,
N.
,
2012
, “
Preclinical Evaluation of an MRI-Compatible Pneumatic Robot for Angulated Needle Placement in Transperineal Prostate Interventions
,”
Int. J. Comput. Assisted Radiol. Surg.
,
7
(
6
), pp.
949
957
.10.1007/s11548-012-0750-1
16.
Comber
,
D. B.
,
Barth
,
E. J.
, and
Webster
,
R. J.
, III
,
2014
, “
Design and Control of a Magnetic Resonance Compatible Precision Pneumatic Active Cannula Robot
,”
ASME J. Med. Devices
,
8
(
1
), p.
011003
.10.1115/1.4024832
17.
Stoianovici
,
D.
,
Patriciu
,
A.
,
Mazilu
,
D.
, and
Kavoussi
,
L.
,
2007
, “
A New Type of Motor: Pneumatic Step Motor
,”
IEEE/ASME Trans. Mechatronics
,
12
(
1
), pp.
98
106
.10.1109/TMECH.2006.886258
18.
Mingyen
,
H.
,
McMillan
,
A.
,
Simard
,
J.
,
Gullapalli
,
R.
, and
Desai
,
J.
,
2012
, “
Towards a Meso-Scale SMA-Actuated MRI-Compatible Neurosurgical Robot
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
213
222
.10.1109/TRO.2011.2165371
19.
Vartholomeos
,
P.
,
Bergeles
,
C.
,
Qin
,
L.
, and
Dupont
,
P.
,
2013
, “
An MRI-Powered and Controlled Actuator Technology for Tetherless Robotic Interventions
,”
Int. J. Rob. Res.
,
32
(
13
), pp.
1536
1552
.10.1177/0278364913500362
20.
Christoforou
,
E.
, and
Tsekos
,
N. V.
,
2006
, “
Robotic Manipulators With Remotely Actuated Joints: Implementation Using Drive Shafts and U-Joints
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2006
), Orlando, FL, May 15–19, pp.
2866
2871
.10.1109/ROBOT.2006.1642136
21.
Krieger
,
A.
,
Susil
,
R. C.
,
Ménard
,
C.
,
Coleman
,
J. A.
,
Fichtinger
,
G.
,
Atalar
,
E.
, and
Whitcomb
,
L. L.
,
2005
, “
Design of a Novel MRI Compatible Manipulator for Image Guided Prostate Interventions
,”
IEEE Trans. Biomed. Eng.
,
52
(
2
), pp.
306
313
.10.1109/TBME.2004.840497
22.
Harrington
,
G. S.
,
Wright
,
C. T.
, and
Downs
,
J. H.
, III
,
2000
, “
A New Vibrotactile Stimulator for Functional MRI
,”
Hum. Brain Mapp.
,
10
(
3
), pp.
140
145
.10.1002/1097-0193(200007)10:3<140::AID-HBM50>3.0.CO;2-0
23.
Masamune
,
K.
,
Kobayashi
,
E.
,
Masutani
,
Y.
,
Suzuki
,
M.
,
Dohi
,
T.
,
Iseki
,
H.
, and
Takakura
,
K.
,
1995
, “
Development of an MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery
,”
J. Image Guided Surg.
,
1
(
4
), pp.
242
248
.10.1002/(SICI)1522-712X(1995)1:4<242::AID-IGS7>3.0.CO;2-A
24.
Park
,
S.
,
Takemura
,
K.
, and
Mano
,
T.
,
2004
, “
Study of Multi-DOF Ultrasonic Actuator for Laparoscopic Instruments
,”
JSME Int. J.
,
74
(
2
), pp.
574
581
.10.1299/jsmec.47.574
25.
Elhawary
,
H.
,
Zivanovic
,
A.
,
Rea
,
M.
,
Davies
,
B. L.
,
Besant
,
C.
,
Young
,
I.
, and
Lamperth
,
M. U.
,
2008
, “
A Modular Approach to MRI-Compatible Robotics
,”
IEEE Eng. Med. Biol. Magazine
,
27
(
3
), pp.
35
41
.10.1109/EMB.2007.910260
26.
Salisbury
,
S.
,
Waechter
,
D. F.
,
Ben Mrad
,
R.
,
Prasad
,
S. E.
,
Blacow
,
R. G.
, and
Yan
,
B.
,
2006
, “
Design Considerations for Complementary Inchworm Actuators
,”
IEEE/ASME Trans. Mechatronics
,
11
(
3
), pp.
265
272
.10.1109/TMECH.2006.875565
27.
Salisbury
,
S.
,
Waechter
,
D.
,
Ben Mrad
,
R.
,
Prasad
,
S.
,
Blacow
,
R.
, and
Yan
,
B.
,
2007
, “
Closed Loop Control of Complementary Clamp Piezoworm Actuator
,”
IEEE/ASME Trans. Mechatronics
,
12
(
6
), pp.
590
598
.10.1109/TMECH.2007.910049
28.
Zhang
,
B.
, and
Zhu
,
Z.
,
1997
, “
Developing a Linear Piezomotor With Nanometer Resolution and High Stiffness
,”
IEEE/ASME Trans. Mechatronics
,
2
(
1
), pp.
22
29
.10.1109/3516.558855
29.
El Bannan
,
K.
,
Handler
,
W.
,
Wyenberg
,
C.
,
Chronik
,
B.
, and
Salisbury
,
S. P.
,
2013
, “
Prediction of Force and Image Artifacts Under MRI for Metals Used in Medical Devices
,”
IEEE/ASME Trans. Mechatronics
,
8
(
3
), pp.
954
962
.10.1109/TMECH.2012.2195672
30.
El Bannan
,
K.
,
Handler
,
W.
,
Chronik
,
B.
, and
Salisbury
,
S.
,
2013
, “
Heating of Metallic Rods Induced by Time-Varying Gradient Fields in MRI
,”
J. Magn. Reson. Imaging
,
38
(
2
), pp.
411
416
.10.1002/jmri.23984
31.
Tenzer
,
P.
, and
Ben Mrad
,
R.
,
2004
, “
A Systematic Procedure for the Design Piezoelectric Inchworm Precision Positioners
,”
IEEE/ASME Trans. Mechatronics
,
9
(
2
), pp.
427
435
.10.1109/TMECH.2004.828627
32.
National Instruments,
2009
, LABVIEW Real-Time, Version 9.0, National Instruments Corp., Austin, TX.
You do not currently have access to this content.