A passive, parallel master–slave mechanism is presented for magnetic resonance imaging (MRI)-guided interventions in the pelvis. The mechanism allows a physician to stand outside the MRI scanner while manipulating a needle inside the bore and, unlike a powered robot, does not place actuators in proximity to the patient. The manipulator combines two parallel mechanisms based on the Delta robot architecture. The mechanism also includes a two-axis gimbal to allow for tool angulation, giving a total of five degrees of freedom so that the physician can insert and steer a needle using continuous natural arm and wrist movements, unlike simple needle guides. The need for access between the patient’s legs and within the MRI scanner leads to an unusual asymmetric design in which the sliding prismatic joints form the vertices of an isosceles triangle. Kinematic analysis shows that the dexterity index of this design is improved over the desired workspace, as compared to an equilateral design. The analysis is extended to estimate the effect of friction and model the input:output force transmission. Prototypes, with final dimensions selected for transperineal prostate interventions, showed force transmission behavior as predicted by simulation, and easily withstood maximum forces required for tool insertion.

References

References
1.
Kozlowski
,
P.
,
Chang
,
S. D.
,
Jones
,
E. C.
,
Berean
,
K. W.
,
Chen
,
H.
, and
Goldenberg
,
S. L.
,
2006
, “
Combined Diffusion-Weighted and Dynamic Contrast-Enhanced MRI for Prostate Cancer Diagnosis–Correlation With Biopsy and Histopathology
,”
J. Magn. Reson. Imaging
,
24
(
1
), pp.
108
113
.10.1002/jmri.20626
2.
Beyersdorff
,
D.
,
Winkel
,
A.
,
Hamm
,
B.
,
Lenk
,
S.
,
Loening
,
S. A.
, and
Taupitz
,
M.
,
2005
, “
MR Imaging-Guided Prostate Biopsy With a Closed MR Unit at 1.5 T: Initial Results
,”
Radiology
,
234
(
2
), pp.
576
581
.10.1148/radiol.2342031887
3.
Zangos
,
S.
,
Herzog
,
C.
,
Eichler
,
K.
,
Hammerstingl
,
R.
,
Lukoschek
,
A.
,
Guthmann
,
S.
,
Gutmann
,
B.
,
Schoepf
,
U. J.
,
Costello
,
P.
, and
Vogl
,
T. J.
,
2007
, “
MR-Compatible Assistance System for Punction in a High-Field System: Device and Feasibility of Transgluteal Biopsies of the Prostate Gland
,”
Eur. Radiol.
,
17
(
4
), pp.
1118
1124
.10.1007/s00330-006-0421-0
4.
Muntener
,
M.
,
Patriciu
,
A.
,
Petrisor
,
D.
,
Schär
,
M.
,
Ursu
,
D.
,
Song
,
D. Y.
, and
Stoianovici
,
D.
,
2008
, “
Transperineal Prostate Intervention: Robot for Fully Automated MR Imaging—System Description and Proof of Principle in a Canine Model
,”
Radiology
,
247
(
2
), pp.
543
549
.10.1148/radiol.2472070737
5.
Fischer
,
G. S.
,
Iordachita
,
I.
,
Csoma
,
C.
,
Tokuda
,
J.
,
Dimaio
,
S. P.
,
Tempany
,
C. M.
,
Hata
,
N.
, and
Fichtinger
,
G.
,
2008
, “
MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement
,”
IEEE/ASME Trans. Mechatron.
,
13
(
3
), pp.
295
305
.10.1109/TMECH.2008.924044
6.
Elhawary
,
H.
,
Zivanovic
,
A.
,
Rea
,
M.
,
Davies
,
B.
,
Besant
,
C.
,
McRobbie
,
D.
,
de Souza
,
N.
,
Young
,
I.
, and
Lampérth
,
M.
,
2006
, “
The Feasibility of MR-Image Guided Prostate Biopsy Using Piezoceramic Motors Inside or Near to the Magnet Isocentre
,” 9th International Conference of Medical Image Computing and Computer-Assisted Intervention (
MICCAI 2006
), Copenhagen, Denmark, Oct. 1–6, pp.
519
526
.10.1007/11866565_64
7.
Yu
,
N.
,
Hollnagel
,
C.
,
Blickenstorfer
,
A.
,
Kollias
,
S.
, and
Riener
,
R.
,
2008
, “
fMRI-Compatible Robotic Interfaces With Fluidic Actuation
,”
Robotics: Science and Systems IV
, Zurich, Switzerland, June 25–28.
8.
Awtar
,
S.
,
Trutna
,
T. T.
,
Nielsen
,
J. M.
,
Abani
,
R.
, and
Geiger
,
J.
,
2010
, “
FlexDex: A Minimally Invasive Surgical Tool With Enhanced Dexterity and Intuitive Control
,”
ASME J. Med. Devices
,
4
(
3
), p.
035003
.10.1115/1.4002234
9.
Glachet
,
C.
,
Francois
,
D.
,
Tentelier
,
J.
, and
Frioux
,
C.
,
1985
, “
Master-Slave Type Telescopic Telemanipulator
,” U.S. Patent No. 4,493,598.
10.
Honegger
,
M.
,
Codourey
,
A.
, and
Burdet
,
E.
,
1997
, “
Adaptive Control of the Hexaglide, a 6 Dof Parallel Manipulator
,”
IEEE International Conference on Robotics and Automation
, Albuquerque, NM, Apr. 20–25, pp.
543
548
.10.1109/ROBOT.1997.620093
11.
Clavel
,
R.
,
1991
, “
Conception d’un robot parallèle rapide à 4 degrés de liberté
,” Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
12.
Merlet
,
J.-P.
,
2000
,
Parallel Robots
,
Kluwer Academic Publishers
, Dordrecht, The Netherlands.
13.
Gosselin
,
C.
,
1985
, “
Kinematic Analysis, Optimization and Programming of Parallel Robotic Manipulators
,” Ph.D. thesis, McGill University, Montreal, Canada.
14.
Tsai
,
L.
, and
Tahmasebi
,
F.
,
1993
, “
Synthesis and Analysis of a New Class of Six-Degree-of-Freedom Parallel Minimanipulators
,”
J. Rob. Syst.
,
10
(
5
), pp.
561
580
.10.1002/rob.4620100503
15.
Zanganeh
,
K. E.
, and
Angeles
,
J.
,
1997
, “
Kinematic Isotropy and the Optimum Design of Parallel Manipulators
,”
Int. J. Rob. Res.
,
16
(
2
), pp.
185
197
.10.1177/027836499701600205
16.
Giberti
,
H.
,
Righettini
,
P.
, and
Tasora
,
A.
,
2001
, “
Design and Experimental Test of a Pneumatic Translational 3dof Parallel Manipulator
,”
10th International WorkShop on Robotics in Alpe-AdriaDanube
Region (RAAD-2001), Vienna, Austria, May 16–19.
17.
Tsai
,
L.-W.
, and
Joshi
,
S.
,
2002
, “
Kinematic Analysis of 3-DOF Position Mechanisms for Use in Hybrid Kinematic Machines
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
245
253
.10.1115/1.1468860
18.
Callegari
,
M.
, and
Marzetti
,
P.
,
2004
, “
Kinematic Characterisation of a 3-PUU Parallel Robot
,”
Intelligent Manipulation and Grasping
(IMG04), Genova, Italy, June 30–July 1, pp.
377
382
.
19.
Li
,
Y.
, and
Xu
,
Q.
,
2006
, “
Kinematic Analysis and Design of a New 3-DOF Translational Parallel Manipulator
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
729
737
.10.1115/1.2198254
20.
Merlet
,
J.-P.
, and
Gosselin
,
C.
,
2008
, “
Parallel Mechanisms and Robots
,”
Springer Handbook of Robotics
,
B.
Siciliano
and
O.
Khatib
, eds.,
Springer
,
Berlin, Germany
, pp.
269
285
.
21.
Lee
,
D.
,
Kim
,
J.
, and
Seo
,
T.
,
2012
, “
Optimal Design of 6-DOF Eclipse Mechanism Based on Task-Oriented Workspace
,”
Robotica
,
30
(
7
), pp.
1041
1048
.10.1017/S0263574711000774
22.
Gallardo-Alvarado
,
J.
,
Alici
,
G.
, and
Rodríguez-Castro
,
R.
,
2012
, “
A Novel Three Degrees of Freedom Partially Decoupled Robot With Linear Actuators
,”
Robotica
,
30
(
3
), pp.
467
475
.10.1017/S026357471100083X
23.
Merlet
,
J. P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.10.1115/1.2121740
24.
Kim
,
J.-O.
, and
Khosla
,
P.
,
1991
, “
Dexterity Measures for Design and Control of Manipulators
,” IEEE/RSJ International Workshop on Intelligent Robots and Systems (
IROS '91
), Osaka, Japan, Nov. 3–5, pp.
758
763
.10.1109/IROS.1991.174572
25.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.10.1115/1.2912772
26.
Stocco
,
L. J.
,
Salcudean
,
S. E.
, and
Sassani
,
F.
,
1997
, “
Mechanism Design for Global Isotropy With Applications to Haptic Interfaces
,”
ASME
Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Dallas, TX, Nov. 15–21, pp. 115–122.
27.
Eslami
,
S.
,
Fischer
,
G. S.
,
Song
,
S.-E.
,
Tokuda
,
J.
,
Hata
,
N.
,
Tempany
,
C. M.
, and
Iordachita
,
I.
,
2013
, “
Towards Clinically Optimized MRI-Guided Surgical Manipulator for Minimally Invasive Prostate Percutaneous Interventions: Constructive Design
,” IEEE International Conference on Robotics and Automation (
ICRA
), Karlsruhe, Germany, May 6–10, pp. 1228–1233.10.1109/ICRA.2013.6630728
28.
Podder
,
T.
,
Clark
,
D.
,
Sherman
,
J.
,
Fuller
,
D.
,
Messing
,
E.
,
Rubens
,
D.
,
Strang
,
J.
,
Brasacchio
,
R.
,
Liao
,
L.
,
Ng
,
W.-S.
, and
Yu
,
Y.
,
2006
, “
In Vivo Motion and Force Measurement of Surgical Needle Intervention During Prostate Brachytherapy
,”
Med. Phys.
,
33
(
8
), pp.
2915
2922
.10.1118/1.2218061
29.
Dumoulin
,
C. L.
,
Souza
,
S. P.
, and
Darrow
,
R. D.
,
1993
, “
Real-Time Position Monitoring of Invasive Devices Using Magnetic Resonance
,”
Magn. Reson. Med.
,
29
(
3
), pp.
411
415
.10.1002/mrm.1910290322
30.
Ho
,
M.
,
Member
,
S.
,
McMillan
,
A. B.
,
Simard
,
J. M.
,
Gullapalli
,
R.
,
Desai
,
J. P.
, and
Member
,
S.
,
2012
, “
Toward a Meso-Scale SMA-Actuated MRI-Compatible Neurosurgical Robot
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
213
222
.10.1109/TRO.2011.2165371
31.
Sutherland
,
G. R.
,
McBeth
,
P. B.
, and
Louw
,
D. F.
,
2003
, “
NeuroArm: An MR Compatible Robot for Microsurgery
,”
Int. Congr. Ser.
,
1256
, pp.
504
508
.10.1016/S0531-5131(03)00439-4
You do not currently have access to this content.