A novel spine test machine was developed for physiological loading of spinal segments. It can be used in conjunction with external motion-capture systems (EMCS) to measure angular displacement, but can also measure in-plane rotations directly, though the inherent error is unknown. This study quantified error inherent in the displacement measurement of the machine. Synthetic specimens representative of cadaveric spinal specimens were tested. Machine displacement was compared to EMCS displacement. The maximum machine displacement error was <2 deg for lumbar and thoracic specimens. The authors suggest that researchers use EMCS in conjunction with the test machine when high accuracy measurements are required.

References

References
1.
Panjabi
,
M. M.
,
Krag
,
M. H.
, and
Goel
,
V. K.
,
1981
, “
A Technique for Measurement and Description of Three-Dimensional Six Degree-of-Freedom Motion of a Body Joint With an Application to the Human Spine
,”
J. Biomech.
,
14
(
7
), pp.
447
460
.10.1016/0021-9290(81)90095-6
2.
Panjabi
,
M. M.
,
Hausfeld
,
J. N.
, and
White
, III,
A. A.
,
1981
, “
A Biomechanical Study of the Ligamentous Stability of the Thoracic Spine in Man
,”
Acta Orthop. Scand.
,
52
(
3
), pp.
315
326
.10.3109/17453678109050109
3.
Wilke
,
H. J.
,
Wenger
,
K.
, and
Claes
,
L.
,
1998
, “
Testing Criteria for Spinal Implants: Recommendations for the Standardization of In Vitro Stability Testing of Spinal Implants
,”
Eur. Spine J.
,
7
(
2
), pp.
148
154
.10.1007/s005860050045
4.
Goertzen
,
D. J.
,
Lane
,
C.
, and
Oxland
,
T. R.
,
2004
, “
Neutral Zone and Range of Motion in the Spine are Greater With Stepwise Loading Than With a Continuous Loading Protocol. An In Vitro Porcine Investigation
,”
J. Biomech.
,
37
(
2
), pp.
257
261
.10.1016/S0021-9290(03)00307-5
5.
Sangiorgio
,
S. N.
,
Borkowski
,
S. L.
,
Bowen
,
R. E.
,
Scaduto
,
A. A.
,
Frost
,
N. L.
, and
Ebramzadeh
,
E.
,
2013
, “
Quantification of Increase in Three-Dimensional Spine Flexibility Following Sequential Ponte Osteotomies in a Cadaveric Model
,”
Spine Deformity
,
1
(
3
), pp.
171
178
.10.1016/j.jspd.2013.01.006
6.
Kelly
,
B. P.
, and
Bennett
,
C. R.
,
2013
, “
Design and Validation of a Novel Cartesian Biomechanical Testing System With Coordinated 6DOF Real-Time Load Control: Application to the Lumbar Spine (L1-S, L4-L5)
,”
J. Biomech.
,
46
(
11
), pp.
1948
1954
.10.1016/j.jbiomech.2013.05.008
7.
Goel
,
V. K.
,
Clark
,
C. R.
,
McGowan
,
D.
, and
Goyal
,
S.
,
1984
, “
An In-Vitro Study of the Kinematics of the Normal, Injured and Stabilized Cervical Spine
,”
J. Biomech.
,
17
(
5
), pp.
363
376
.10.1016/0021-9290(84)90030-7
8.
Wilke
,
H. J.
,
Drumm
,
J.
,
Haussler
,
K.
,
Mack
,
C.
,
Steudel
,
W. I.
, and
Kettler
,
A.
,
2008
, “
Biomechanical Effect of Different Lumbar Interspinous Implants on Flexibility and Intradiscal Pressure
,”
Eur. Spine J.
,
17
(
8
), pp.
1049
1056
.10.1007/s00586-008-0657-2
9.
Ilharreborde
,
B.
,
Zhao
,
K.
,
Boumediene
,
E.
,
Gay
,
R.
,
Berglund
,
L.
, and
An
,
K. N.
,
2010
, “
A Dynamic Method for In Vitro Multisegment Spine Testing
,”
Orthop. Traumatol., Surg. Res.
,
96
(
4
), pp.
456
461
.10.1016/j.otsr.2010.01.006
10.
Carroll
,
N. L.
,
Cartwright
,
E. C.
,
Gephardt
,
R. J.
,
Dixon
,
C. L.
,
Goel
,
V. K.
, and
Friis
,
E. A.
,
2013
, “
Simplified Spine Testing Device
,” U.S. Patent Publication No. WO2013020125 A1.
11.
Myers
,
B. S.
,
McElhaney
,
J. H.
, and
Doherty
,
B. J.
,
1991
, “
The Viscoelastic Responses of the Human Cervical Spine in Torsion: Experimental Limitations of Quasi-Linear Theory, and a Method for Reducing These Effects
,”
J. Biomech.
,
24
(
9
), pp.
811
817
.10.1016/0021-9290(91)90306-8
12.
Brodke
,
D. S.
,
Gollogly
,
S.
,
Alexander Mohr
,
R.
,
Nguyen
,
B. K.
,
Dailey
,
A. T.
, and
Bachus
,
A. K.
,
2001
, “
Dynamic Cervical Plates: Biomechanical Evaluation of Load Sharing and Stiffness
,”
Spine
,
26
(
12
), pp.
1324
1329
.10.1097/00007632-200106150-00010
13.
Panjabi
,
M. M.
,
Goel
,
V. K.
, and
Takata
,
K.
,
1982
, “
Physiologic Strains in the Lumbar Spinal Ligaments. An In Vitro Biomechanical Study
,”
Spine
,
7
(
3
), pp.
192
203
.10.1097/00007632-198205000-00003
14.
Panjabi
,
M. M.
,
Brand
, Jr,
R. A.
, and
White
, III,
A. A.
,
1976
, “
Three-Dimensional Flexibility and Stiffness Properties of the Human Thoracic Spine
,”
J. Biomech.
,
9
(
4
), pp.
185
192
.10.1016/0021-9290(76)90003-8
15.
Panjabi
,
M. M.
,
Brand
, Jr,
R. A.
, and
White
, III,
A. A.
,
1976
, “
Mechanical Properties of the Human Thoracic Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
J. Bone Jt. Surg. Am. Vol.
,
58
(
5
), pp.
642
652
.
16.
Nibu
,
K.
,
Panjabi
,
M. M.
,
Oxland
,
T.
, and
Cholewicki
,
J.
,
1997
, “
Multidirectional Stabilizing Potential of BAK Interbody Spinal Fusion System for Anterior Surgery
,”
J. Spinal Disord.
,
10
(
4
), pp.
357
362
.10.1097/00002517-199708000-00012
17.
Guan
,
Y.
,
Yoganandan
,
N.
,
Moore
,
J.
,
Pintar
,
F. A.
,
Zhang
,
J.
,
Maiman
,
D. J.
, and
Laud
,
P.
,
2007
, “
Moment–Rotation Responses of the Human Lumbosacral Spinal Column
,”
J. Biomech.
,
40
(
9
), pp.
1975
1980
.10.1016/j.jbiomech.2006.09.027
18.
Crawford
,
N. R.
,
Peles
,
J. D.
, and
Dickman
,
C. A.
,
1998
, “
The Spinal Lax Zone and Neutral Zone: Measurement Techniques and Parameter Comparisons
,”
J. Spinal Disord.
,
11
(
5
), pp.
416
429
.10.1097/00002517-199810000-00009
19.
Hitchon
,
P. W.
,
Brenton
,
M. D.
,
Serhan
,
H.
,
Goel
,
V. K.
, and
Torner
,
J. C.
,
2002
, “
In Vitro Biomechanical Studies of an Anterior Thoracolumbar Implant
,”
J. Spinal Disord. Tech.
,
15
(
5
), pp.
350
354
.10.1097/00024720-200210000-00002
20.
Ogon
,
M.
,
Bender
,
B. R.
,
Hooper
,
D. M.
,
Spratt
,
K. F.
,
Goel
,
V. K.
,
Wilder
,
D. G.
, and
Pope
,
M. H.
,
1997
, “
A Dynamic Approach to Spinal Instability. Part I: Sensitization of Intersegmental Motion Profiles to Motion Direction and Load Condition by Instability
,”
Spine
,
22
(
24
), pp.
2841
2858
.10.1097/00007632-199712150-00007
21.
Wilke
,
H. J.
,
Jungkunz
,
B.
,
Wenger
,
K.
, and
Claes
,
L. E.
,
1998
, “
Spinal Segment Range of Motion as a Function of In Vitro Test Conditions: Effects of Exposure Period, Accumulated Cycles, Angular-Deformation Rate, and Moisture Condition
,”
Anat. Record
,
251
(
1
), pp.
15
19
.10.1002/(SICI)1097-0185(199805)251:1<15::AID-AR4>3.0.CO;2-D
22.
Friis
,
E. A.
,
Pence
,
C. D.
,
Graber
,
C. D.
, and
Montoya
,
J. A.
,
2002
, “
Mechanical Analogue Model of the Human Lumbar Spine: Development and Initial Evaluation
,”
Spinal Implants: Are We Evaluating Them Appropriately?
(ASTM STP 1431),
M. N.
Melkerson
,
S. L.
Griffith
, and
J. S.
Kirkpatrick
, eds.,
ASTM International
,
West Conshohocken, PA.
23.
Domann
,
J.
,
Mar
,
D.
,
Johnson
,
A.
,
James
,
J.
, and
Friis
,
E. A.
,
2011
, “
The Analogue Spine Model: The First Anatomically and Mechanically Correct Synthetic Physical Model of the Lumbar Spine
,”
The Spine J.
,
11
(10), pp.
S155
S156
.10.1016/j.spinee.2011.08.373
24.
McLain
,
R. F.
,
Yerby
,
S. A.
, and
Moseley
,
T. A.
,
2002
, “
Comparative Morphometry of L4 Vertebrae: Comparison of Large Animal Models for the Human Lumbar Spine
,”
Spine
,
27
(
8
), pp.
E200
E206
.10.1097/00007632-200204150-00005
25.
Shea
,
M.
,
Edwards
,
W. T.
,
White
,
A. A.
, and
Hayes
,
W. C.
,
1991
, “
Variations of Stiffness and Strength Along the Human Cervical Spine
,”
J. Biomech.
,
24
(
2
), pp.
95
107
.10.1016/0021-9290(91)90354-P
26.
Goel
,
V. K.
,
Wilder
,
D. G.
,
Pope
,
M. H.
, and
Edwards
,
W. T.
,
1995
, “
Biomechanical Testing of the Spine. Load-Controlled Versus Displacement-Controlled Analysis
,”
Spine
,
20
(
21
), pp.
2354
2357
.10.1097/00007632-199511000-00017
27.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Carandang
,
G.
,
Simonds
,
J.
,
Voronov
,
L. I.
,
Ghanayem
,
A. J.
,
Meade
,
K. P.
,
Gavin
,
T. M.
, and
Paxinos
,
O.
,
2003
, “
Effect of Compressive Follower Preload on the Flexion-Extension Response of the Human Lumbar Spine
,”
J. Orthop. Res.
,
21
(
3
), pp.
540
546
.10.1016/S0736-0266(02)00202-4
28.
Fielding
,
L. C.
,
Alamin
,
T. F.
,
Voronov
,
L. I.
,
Carandang
,
G.
,
Havey
,
R. M.
, and
Patwardhan
,
A. G.
,
2013
, “
Parametric and Cadaveric Models of Lumbar Flexion Instability and Flexion Restricting Dynamic Stabilization System
,”
Eur. Spine J.
,
22
(
12
), pp.
2710
2718
.10.1007/s00586-013-2934-y
29.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Ghanayem
,
A. J.
,
Diener
,
H.
,
Meade
,
K. P.
,
Dunlap
,
B.
, and
Hodges
,
S. D.
,
2000
, “
Load-Carrying Capacity of the Human Cervical Spine in Compression is Increased Under a Follower Load
,”
Spine
,
25
(
12
), pp.
1548
1554
.10.1097/00007632-200006150-00015
30.
Fry
,
R. W.
,
Alamin
,
T. F.
,
Voronov
,
L. I.
,
Fielding
,
L. C.
,
Ghanayem
,
A. J.
,
Parikh
,
A.
,
Carandang
,
G.
,
McIntosh
,
B. W.
,
Havey
,
R. M.
, and
Patwardhan
,
A. G.
,
2014
, “
Compressive Preload Reduces Segmental Flexion Instability After Progressive Destabilization of the Lumbar Spine
,”
Spine
,
39
(
2
), pp.
E74
E81
.10.1097/BRS.0000000000000093
31.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Meade
,
K. P.
,
Lee
,
B.
, and
Dunlap
,
B.
,
1999
, “
A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression
,”
Spine
,
24
(
10
), pp.
1003
1009
.10.1097/00007632-199905150-00014
32.
Goel
,
V. K.
,
Panjabi
,
M. M.
,
Patwardhan
,
A. G.
,
Dooris
,
A. P.
, and
Serhan
,
H.
,
2006
, “
Test Protocols for Evaluation of Spinal Implants
,”
J. Bone Jt. Surg. Am. Vol.
,
88
(Suppl
2
), pp.
103
109
.10.2106/JBJS.E.01363
You do not currently have access to this content.