A new compact mobile lower limb robotic exoskeleton (MLLRE) has been developed for gait rehabilitation for neurologically impaired patients. This robotic exoskeleton is composed of two exoskeletal orthoses, an active body weight support (BWS) system attached to a motorized mobile base, allowing over-ground walking. The exoskeletal orthosis is optimized to implement the extension and flexion of human hip and knee joints in the sagittal plane. The motor-driven BWS system can actively unload human body weight and track the vertical displacement of the center of mass (COM). This system is compact and easy for therapist to help patient with different weight (up to 100 kg) and height (150–190 cm). Experiments were conducted to evaluate the performance of the robot with a healthy subject. The results show that MLLRE is a useful device for patient to achieve normal over-ground gait patterns.

References

References
1.
Marchal-Crespo
,
L.
, and
Reinkensmeyer
,
D. J.
,
2009
, “
Review of Control Strategies for Robotic Movement Training After Neurologic Injury
,”
J. Neuroeng. Rehabil.
,
6
(
1
), p.
20
.10.1186/1743-0003-6-20
2.
Cai
,
L. L.
,
Fong
,
A. J.
,
Otoshi
,
C. K.
,
Liang
,
Y. Q.
,
Burdick
,
J. W.
,
Roy
,
R. R.
, and
Edgerton
,
V. R.
,
2006
, “
Implications of Assist-as-Needed Robotic Step Training After a Complete Spinal Cord Injury on Intrinsic Strategies of Motor Learning
,”
J. Neurosci.
,
26
(
41
), pp.
10564
10568
.10.1523/JNEUROSCI.2266-06.2006
3.
Dollar
,
A. M.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
144
158
.10.1109/TRO.2008.915453
4.
Strausser
,
K. A.
, and
Kazerooni
,
H.
,
2011
, “
The Development and Testing of a Human Machine Interface for a Mobile Medical Exoskeleton
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS’11
),
San Francisco, CA
, September 25–30, pp.
4911
4916
10.1109/IROS.2011.6095025.
5.
Esquenazi
,
A.
,
Talaty
,
M.
,
Packel
,
A.
, and
Saulino
,
M.
,
2012
, “
The ReWalk Powered Exoskeleton to Restore Ambulatory Function to Individuals With Thoracic-Level Motor-Complete Spinal Cord Injury
,”
Am. J. Phys. Med. Rehabil.
,
91
(
11
), pp.
911
921
.10.1097/PHM.0b013e318269d9a3
6.
Quintero
,
H. A.
,
Farris
,
R. J.
, and
Goldfarb
,
M.
,
2012
, “
A Method for the Autonomous Control of Lower Limb Exoskeletons for Persons With Paraplegia
,”
ASME J. Med. Devices
,
6
(
4
), p.
041003
.10.1115/1.4007181
7.
Hesse
,
S.
,
2008
, “
Treadmill Training With Partial Body Weight Support After Stroke: A Review
,”
NeuroRehabilitation
,
23
(
1
), pp.
55–65
.
8.
Riener
,
R.
,
Lunenburger
,
L.
,
Jezernik
,
S.
,
Anderschitz
,
M.
,
Colombo
,
G.
, and
Dietz
,
V.
,
2005
, “
Patient-Cooperative Strategies for Robot-Aided Treadmill Training: First Experimental Results
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
13
(
3
), pp.
380
394
.10.1109/TNSRE.2005.848628
9.
Veneman
,
J. F.
,
Kruidhof
,
R.
,
Hekman
,
E. E. G.
,
Ekkelenkamp
,
R.
,
Asseldonk
,
E. H. F. V.
, and
van der Kooij
,
H.
,
2007
, “
Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
379
386
.10.1109/TNSRE.2007.903919
10.
Banala
,
S. K.
,
Kim
,
S. H.
,
Agrawal
,
S. K.
, and
Scholz
,
J. P.
,
2009
, “
Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
1
), pp.
2
8
.10.1109/TNSRE.2008.2008280
11.
Stauffer
,
Y.
,
Allemand
,
Y.
,
Bouri
,
M.
,
Fournier
,
J.
,
Clavel
,
R.
,
Metrailler
,
P.
,
Brodard
,
R.
, and
Reynard
,
F.
,
2009
, “
The WalkTrainer–A New Generation of Walking Reeducation Device Combining Orthoses and Muscle Stimulation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
1
), pp.
38
45
.10.1109/TNSRE.2008.2008288
12.
Wang
,
P.
,
Low
,
K. H.
,
Tow
,
A.
, and
Lim
,
P. H.
,
2011
, “
Initial System Evaluation of an Overground Rehabilitation Gait Training Robot (NaTUre-gaits)
,”
Adv. Rob.
,
25
(
15
), pp.
1927
1948
10.1163/016918611X587214.
13.
Patton
,
J.
,
Brown
,
D. A.
,
Peshkin
,
M.
,
Santos-Munne
,
J. J.
,
Makhlin
,
A.
,
Lewis
,
E.
,
Colgate
,
J. E.
, and
Schwandt
,
D.
,
2008
, “
KineAssist: Design and Development of a Robotic Overground Gait and Balance Therapy Device
,”
Top Stroke Rehabil.
,
15
(
2
), pp.
131
139
.10.1310/tsr1502-131
14.
Perry
,
J.
, and
Davids
,
J. R.
,
1992
, “
Gait Analysis: Normal and Pathological Function
,”
J. Pediatr. Orthop.
,
12
(
6
), p.
815
.10.1097/01241398-199211000-00023
15.
Saini
,
M.
,
Kerrigan
,
D. C.
,
Thirunarayan
,
M. A.
, and
Duff-Raffaele
,
M.
,
1998
, “
The Vertical Displacement of the Center of Mass During Walking: A Comparison of Four Measurement Methods
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
133
139
.10.1115/1.2834293
16.
Jezernik
,
S.
,
Colombo
,
G.
, and
Morari
,
M.
,
2004
, “
Automatic Gait-Pattern Adaptation Algorithms for Rehabilitation With a 4-DOF Robotic Orthosis
,”
IEEE Rob. Autom. Mag.
,
20
(
3
), pp.
574
582
.10.1109/TRA.2004.825515
17.
Yin
,
Y. H.
,
Fan
,
Y. J.
, and
Xu
,
L. D.
,
2012
, “
EMG and EPP-Integrated Human-Machine Interface Between the Paralyzed and Rehabilitation Exoskeleton
,”
IEEE Trans. Inf. Technol. Biomed.
,
16
(
4
), pp.
542
549
.10.1109/TITB.2011.2178034
18.
Guo
,
Z.
,
Fan
,
Y. J.
,
Zhang
,
J. J.
,
Yu
,
H.
, and
Yin
,
Y. H.
,
2012
, “
A New 4M Model-Based Human-Machine Interface for Lower Extremity Exoskeleton Robot
,”
5th International Conference on Intelligent Robotics and Applications
(
ICIRA’12
),
Montreal, QC, Canada
, October 3–5, pp.
545
554
10.1007/978-3-642-33509-9_55.
19.
Duschau-Wicke
,
A.
,
von Zitzewitz
,
J.
,
Caprez
,
A.
,
Lunenburger
,
L.
, and
Riener
,
R.
,
2010
, “
Path Control: A Method for Patient-Cooperative Robot-Aided Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
18
(
1
), pp.
38
48
.10.1109/TNSRE.2009.2033061
You do not currently have access to this content.