Robotic surgical tools used in minimally invasive surgeries (MIS) require miniaturized and reliable actuators for precise positioning and control of the end-effector. Miniature pneumatic artificial muscles (MPAMs) are a good choice due to their inert nature, high force to weight ratio, and fast actuation. In this paper, we present the development of miniaturized braided pneumatic muscles with an outer diameter of ∼1.2 mm, a high contraction ratio of about 18%, and capable of providing a pull force in excess of 4 N at a supply pressure of 0.8 MPa. We present the details of the developed experimental setup, experimental data on contraction and force as a function of applied pressure, and characterization of the MPAM. We also present a simple kinematics and experimental data based model of the braided pneumatic muscle and show that the model predicts contraction in length to within 20% of the measured value. Finally, a robust controller for the MPAMs is developed and validated with experiments and it is shown that the MPAMs have a time constant of ∼10 ms thereby making them suitable for actuating endoscopic and robotic surgical tools.

References

References
1.
Della Flora
,
E.
,
Wilson
,
T. G.
,
Martin
,
I. J.
,
O'Rourke
,
N. A.
, and
Maddern
,
G.
,
2008
, “
Review of Natural Orifice Translumenal Endoscopic Surgery (NOTES) for Intra-Abdominal Surgery: Experimental Models, Techniques and Applicability to the Clinical Setting
,”
Ann. Surg.
,
247
(
4
), pp.
583
602
.10.1097/SLA.0b013e3181656ce9
2.
Chou
,
C.-P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
.10.1109/70.481753
3.
De Volder
,
M.
,
Moers
,
A.
, and
Reynaerts
,
D.
,
2011
, “
Fabrication and Control of Miniature McKibben Actuators
,”
Sens. Actuators A
,
166
(
1
), pp.
111
116
.10.1016/j.sna.2011.01.002
4.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst. Mag.
,
20
(
2
), pp.
15
38
.10.1109/37.833638
5.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
.10.1080/11762320802557865
6.
Ikuta
,
K.
,
Nokata
,
M.
, and
Aritomi
,
S.
,
1994
, “
Biomedical Micro Robots Driven by Miniature Cybernetic Actuator
,” IEEE Workshop on Micro Electro Mechanical Systems
(MEMS '94)
, Oiso, Japan, Jan. 25–28, pp.
263
268
.10.1109/MEMSYS.1994.555767
7.
Kai
,
X.
,
Goldman
,
R. E.
,
Jienan
,
D.
,
Allen
,
P. K.
,
Fowler
,
D. L.
, and
Simaan
,
N.
,
2009
, “
System Design of an Insertable Robotic Effector Platform for Single Port Access (SPA) Surgery
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2009)
, St. Louis, MO, Oct. 11–15, pp.
5546
5552
.10.1109/IROS.2009.5354028
8.
Szewczyk
,
J.
,
De Sars
,
V.
,
Bidaud
,
P.
, and
Dumont
,
G.
,
2001
, “
An Active Tubular Polyarticulated Micro-System for Flexible Endoscope
,”
Experimental Robotics VII
,
Springer
,
Berlin, Germany
.
9.
Degani
,
A.
,
Choset
,
H.
,
Wolf
,
A.
, and
Zenati
,
M. A.
,
2006
, “
Highly Articulated Robotic Probe for Minimally Invasive Surgery
,”
IEEE International Conference on Robotics and Automation
(ICRA 2006)
, Orlando, FL, May 15–19, pp.
4167
4172
.10.1109/ROBOT.2006.1642343
10.
Slatkin
,
A. B.
,
Burdick
,
J.
, and
Grundfest
,
W.
,
1995
, “
The Development of a Robotic Endoscope
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS '95)
,
Pittsburgh, PA
, Aug. 5–9, pp.
162
171
.10.1109/IROS.1995.526155
11.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.10.1177/0278364910368147
12.
Jianzhong
,
S.
,
Payne
,
C. J.
,
Clark
,
J.
,
Noonan
,
D. P.
,
Ka-Wai
,
K.
,
Darzi
,
A.
, and
Guang-Zhong
,
Y.
,
2012
, “
Design of a Multitasking Robotic Platform With Flexible Arms and Articulated Head for Minimally Invasive Surgery
,” Intelligent IEEE/RSJ International Conference on Robots and Systems
(IROS)
,
Vilamoura, Portugal
, Oct. 7–12, pp.
1988
1993
.10.1109/IROS.2012.6385567
13.
Kornbluh
,
R.
,
Pelrine
,
R.
,
Eckerle
,
J.
, and
Joseph
,
J.
,
1998
, “
Electrostrictive Polymer Artificial Muscle Actuators
,”
IEEE International Conference on Robotics and Automation
,
Leuven
,
Belgium
, May 16–20, pp.
2147
2154
.10.1109/ROBOT.1998.680638
14.
Moers
,
A.
,
De Volder
,
M.
, and
Reynaerts
,
D.
,
2012
, “
Integrated High Pressure Microhydraulic Actuation and Control for Surgical Instruments
,”
Biomed. Microdevices
,
14
(
4
), pp.
699
708
.10.1007/s10544-012-9650-y
15.
Tondu
,
B.
,
2012
, “
Modelling of the McKibben Artificial Muscle: A Review
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
225
253
.10.1177/1045389X11435435
16.
Klute
,
G. K.
, and
Hannaford
,
B.
,
1998
, “
Fatigue Characteristics of McKibben Artificial Muscle Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Victoria, BC, Canada, Oct. 13–17, pp.
1776
1781
.10.1109/IROS.1998.724854
17.
Liu
,
W.
, and
Rahn
,
C. R.
,
2003
, “
Fiber-Reinforced Membrane Models of McKibben Actuators
,”
ASME J. Appl. Mech.
,
70
(
6
), pp.
853
859
.10.1115/1.1630812
18.
Ramasamy
,
R.
,
Juhari
,
M. R.
,
Mamat
,
M.
,
Yaacob
,
S.
,
Nasir
,
N. M.
, and
Sugisaka
,
M.
,
2005
, “
An Application of Finite Element Modelling to Pneumatic Artificial Muscle
,”
Am. J. Appl. Sci.
,
2
(
11
), pp.
1504
1508
.10.3844/ajassp.2005.1504.1508
19.
Zhou
,
B.
,
Accorsi
,
M.
, and
Leonard
,
J.
,
2004
, “
A New Finite Element for Modeling Pneumatic Muscle Actuators
,”
Comput. Struct.
,
82
(
11
), pp.
845
856
.10.1016/j.compstruc.2004.02.023
20.
De Volder
,
M.
,
Coosemans
,
J.
,
Puers
,
R.
, and
Reynaerts
,
D.
,
2008
, “
Characterization and Control of a Pneumatic Microactuator With an Integrated Inductive Position Sensor
,”
Sens. Actuators A
,
141
(
1
), pp.
192
200
.10.1016/j.sna.2007.07.012
21.
Woods
,
B. K.
,
Choi
,
Y.-T.
,
Kothera
,
C. S.
, and
Wereley
,
N. M.
,
2013
, “
Control System Development for Pneumatic Artificial Muscle-Driven Active Rotor Systems
,”
J. Guid. Control Dyn.
,
36
(
4
), pp.
1177
1185
.10.2514/1.56528
22.
Kothera
,
C. S.
,
Jangid
,
M.
,
Sirohi
,
J.
, and
Wereley
,
N. M.
,
2009
, “
Experimental Characterization and Static Modeling of McKibben Actuators
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091010
.10.1115/1.3158982
23.
Nagaraj
,
B.
,
Pandiyan
,
R.
, and
Ghosal
,
A.
,
2009
, “
Kinematics of Pantograph Masts
,”
Mech. Mach. Theory
,
44
(
4
), pp.
822
834
.10.1016/j.mechmachtheory.2008.04.004
24.
Abràmoff
,
M. D.
,
Magalhães
,
P. J.
, and
Ram
,
S. J.
,
2004
, “
Image Processing With ImageJ
,” Biophotonics Int.,
11
(
7
), pp.
36
42
, available at: http://webeye.ophth.uiowa.edu/dept/biograph/abramoff/imagej.pdf
25.
Parker
,
2013
, VSO Miniature Proportional “Valve,” Parker Hannifin Precision Fluidics Division, Hollis, NH, accessed May 11, 2013, http://ph.parker.com/us/12051/en/vso-miniature-proportional-valve
26.
Arduino
,
2012
An Open-Source Electronics Prototyping Platform
,” accessed May 11, 2013, http://www.arduino.cc
27.
MathWorks, 2012, matlab
, Version 7.12.0 (R2012a), The MathWorks Inc., Natick, MA.
28.
Khalil
,
H. K.
,
1992
,
Nonlinear Systems
, Prentice-Hall, Upper Saddle River, NJ.
You do not currently have access to this content.