A powered ankle-foot prothesis and its control system were previously designed and built. To evaluate this prosthesis, amputee subject testing was performed. The testing results are analyzed and compared between the powered prosthesis, passive prosthesis, and able-bodied gait. Qualitative comparison showed the prosthesis achieved the design objectives. During stance phase, active ankle moment was generated in the powered prosthesis before push-off to help the amputee walk more naturally. During swing phase, the powered prosthesis was able to move to natural position to achieve foot clearance. However, the prosthesis is slightly under powered compared with the able-bodied ankle.

References

References
1.
Hansen
,
A.
,
Childress
,
D.
,
Miff
,
S.
,
Gard
,
S.
, and
Mesplay
,
K.
,
2004
, “
The Human Ankle During Walking: Implications for Design of Biomimetic Ankle Prostheses
,”
J. Biomech.
,
37
(10), pp.
1467
1474
.10.1016/j.jbiomech.2004.01.017
2.
Bergelin
,
B.
,
Mattos
,
J.
,
Wells
,
J.
, and
Voglewede
,
P.
,
2010
, “
Concept Through Preliminary Bench Testing of a Powered Lower Limb Prosthetic Device
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041005
.10.1115/1.4002205
3.
Bergelin
,
B.
, and
Voglewede
,
P.
,
2012
, “
Design of an Active Ankle-Foot Prosthesis Utilizing a Four-Bar Mechanism
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061004
.10.1115/1.4006436
4.
Sun
,
J.
, and
Voglewede
,
P.
,
2014
, “
Powered Transtibial Prosthetic Device Control System Design, Implementation, and Bench Testing
,”
ASME J. Med. Devices
,
8
(
1
), p.
011004
.10.1115/1.4025851
5.
Au
,
S.
, and
Herr
,
H.
,
2008
, “
Powered Ankle-Foot Prosthesis: The Importance of Series and Parallel Elasticity
,”
IEEE Rob. Autom. Mag.
,
15
(
3
), pp.
51
66
.10.1109/MRA.2008.927697
6.
Au
,
S.
,
Berniker
,
M.
, and
Herr
,
H.
,
2008
, “
Powered Ankle-Foot Prosthesis to Assist Level-Ground and Stair-Descent Gaits
,”
Neural Networks
,
21
(
4
), pp.
654
666
.10.1016/j.neunet.2008.03.006
7.
Au
,
S.
,
Weber
,
J.
, and
Herr
,
H.
,
2009
, “
Powered Ankle-Foot Prosthesis Improves Walking Metabolic Economy
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
52
59
.10.1109/TRO.2008.2008747
8.
Eilenberg
,
M.
,
Geyer
,
H.
, and
Herr
,
H.
,
2010
, “
Control of a Powered Ankle-Foot Prosthesis Based on a Neuromuscular Model
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
18
(
2
), pp.
164
173
.10.1109/TNSRE.2009.2039620
9.
Hitt
,
J.
,
Sugar
,
T.
,
Hogate
,
M.
,
Bellman
,
R.
, and
Hollander
,
K.
,
2009
, “
Robotic Transtibial Prosthesis With Biomechanical Energy Regeneration
,”
Ind. Rob.: Int. J.
,
36
(
5
), pp.
441
447
.10.1108/01439910910980169
10.
Hitt
,
J.
,
Sugar
,
T.
,
Hogate
,
M.
, and
Bellman
,
R.
,
2010
, “
An Active Foot-Ankle Prosthesis With Biomechanical Energy Regeneration
,”
ASME J. Med. Devices
,
4
(
1
), p.
011003
.10.1115/1.4001139
11.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
,
2008
, “
Design and Control of a Powered Transfemoral Prosthesis
,”
Int. J. Rob. Res.
,
27
(
2
), pp.
263
273
.10.1177/0278364907084588
12.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
,
2009
, “
Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis
,”
IEEE/ASME Trans. Mechatronics
,
14
(
6
), pp.
667
676
.10.1109/TMECH.2009.2032688
13.
Sup
,
F.
,
Varol
,
H. A.
, and
Goldfarb
,
M.
,
2011
, “
Upslope Walking With a Powered Knee and Ankle Prosthesis: Initial Results With an Amputee Subject
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
1
), pp.
71
78
.10.1109/TNSRE.2010.2087360
14.
Winter
,
D.
,
1990
,
Biomechanics and Motor Control of Human Movement
,
Wiley-Interscience
, New York.
15.
Sun
,
J.
, and
Voglewede
,
P. A.
,
2011
, “
Controller Implementation of a Powered Transtibial Prosthetic Device
,”
ASME International Design Engineering Technical Conferences and Computer and Information in Engineering Conference
, Washington, DC, Aug. 28–31,
ASME
Paper No. DETC2011-47957, pp.
597
603
.10.1115/DETC2011-47957
16.
Perry
,
J.
, and
Burnfield
,
J.
,
2010
,
Gait Analysis: Normal and Pathological Function
,
Slack Incorporated
, Thorofare, NJ.
17.
Sun
,
J.
,
2012
, “
Powered Transtibial Prosthetic Device Control System Design, Implementation, and Testing
,” M.S. thesis, Marquette University, Milwaukee, WI.
18.
Schaarschmidt
,
M.
,
Lipfert
,
S.
,
Meier-Gratz
,
C.
,
Scholle
,
H.
, and
Seyfarth
,
A.
,
2012
, “
Functional Gait Asymmetry of Unilateral Transfemoral Amputees
,”
Hum. Mov. Sci.
,
31
(
4
), pp.
907
917
.10.1016/j.humov.2011.09.004
You do not currently have access to this content.