Bone anchors (or suture anchors) are used to provide attachment points for sutures to connect tissue such as tendons or ligaments to bone, and work by engaging a threaded portion—sometimes tapered—to the cancellous and/or cortical bone. Such repair is often needed after trauma, or as part of reconstructive surgery. This paper uses the finite element method to compare the pullout characteristics of one common type of bone anchor in different cancellous bone structures. Finite element models are created by using computed tomography (CT) scans of cancellous bone and building computer-aided design (CAD) models to define the cancellous bone geometry. Orthopedic surgeons will sometimes remove parts of the cortical shell and this paper also examines the mechanical effects of decortication. Furthermore, the importance of the connection between anchor and cortical layer is examined. One of the key outcomes from the model is that the coefficient of friction between bone and anchor determines potential mechanisms of pullout. The stiffness of anchors and the effect of the cortical layer are presented for different pullout angles to obtain the theoretical response. The results show the detailed modeling that includes the micro-architecture of the cancellous bone is necessary to capture the large variations that can exist.

References

References
1.
Barber
,
F. A.
,
Herbert
,
M. A.
,
Coons
,
D. A.
, and
Boothby
,
M. H.
,
2006
, “
Sutures and Suture Anchors—Update 2006
,”
Arthroscopy: J. Arthroscopic Relat. Surg.
,
22
(10), pp. 1063–1069.10.1016/j.arthro.2006.04.106
2.
Barber
,
A.
,
Herbert
,
M. A.
,
Beavis
,
C.
, and
Oro
,
F. B.
,
2008
, “
Suture Anchor Materials, Eyelets, and Designs: Update 2008
,”
Arthroscopy: J. Arthroscopic Relat. Surg.
,
24
(8), pp. 859–867.10.1016/j.arthro.2008.03.006
3.
Tan
,
C. K.
,
Guisasola
,
I.
,
Machani
,
B.
,
Kemp
,
G.
,
Sinopidis
,
C.
,
Brownson
,
P.
, and
Frostick
,
S.
,
2006
, “
Arthroscopic Stabilization of the Shoulder: A Prospective Randomized Study of Absorbable Versus Non-Absorbable Suture Anchors
,”
Arthroscopy
,
22
(7), pp.
716
720
.10.1016/j.arthro.2006.03.017
4.
Cummins
,
C. A.
, and
Murrell
,
G. A.
,
2003
, “
Mode of Failure for Rotator Cuff Repair With Suture Anchors Identified at Revision Surgery
,”
J. Shoulder Elbow Surg.
,
12
(
2
), pp.
128
133
.10.1067/mse.2003.21
5.
Bynum
,
C. K.
,
Lee
,
S.
,
Mahar
,
A.
,
Tasto
,
J.
, and
Pedowitz
,
R.
,
2005
, “
Failure Mode of Suture Anchors as a Function of Insertion Depth
,”
Am. J. Sports Med.
,
33
(
7
), pp.
1030
1034
.10.1177/0363546504271746
6.
Yakacki
,
C. M.
,
Poukalova
,
M.
,
Guldberg
,
R. E.
,
Lin
,
A.
,
Saing
,
M.
,
Gillogy
,
S.
, and
Gall
,
K.
,
2010
, “
The Effect of the Trabecular Microstructure on the Pullout Strength of Suture Anchors
,”
J. Biomech.
,
43
, pp
1953
1959
.10.1016/j.jbiomech.2010.03.013
7.
Hildebrand
,
T.
, and
Rüegsegger
,
P.
,
1997
, “
Quantification of Bone Microarchitecture With the Structure Model Index
,”
Comput. Methods Biomech. Biomed. Eng.
,
1
(
1
), pp.
15
23
.10.1080/01495739708936692
8.
Tingart
,
M. J.
,
Apreleva
,
M.
,
Lehtinen
,
J.
,
Zurakowski
,
D.
, and
Warner
,
J. J.
,
2004
, “
Anchor Design and Bone Mineral Density Affect the Pullout Strength of Suture Anchors in Rotator Cuff Repair: Which Anchors are Best to Use in Patients With Low Bone Quality?
,”
Am. J. Sports Med.
,
32
(
6
), pp.
1466
1473
.10.1177/0363546503262644
9.
Poukalova
,
M.
,
Yakacki
,
C. M.
,
Guldberg
,
R. E.
,
Lin
,
A.
,
Saing
,
M.
,
Gillogly
,
S. D.
, and
Gall
,
K.
,
2010
, “
Pullout Strength of Suture Anchors: Effect of Mechanical Properties of Trabecular Bone
,”
J. Biomech.
,
43
(
6
), pp.
1138
1145
.10.1016/j.jbiomech.2009.12.007
10.
Asnis
,
S. E.
,
Ernberg
,
J. J.
,
Bostrom
,
M.
,
Wright
,
T. M.
,
Harrington
,
R. M.
,
Tencer
,
A.
, and
Peterson
,
M.
,
1996
, “
Cancellous Bone Screw Thread Design and Holding Power
,”
J. Orthop. Trauma
,
10
(
7
), pp.
462
469
.10.1097/00005131-199610000-00003
11.
Chapman
,
J. R.
,
Harrington
,
R. M.
,
Lee
,
K. M.
,
Anderson
,
P. A.
,
Tencer
,
A. F.
, and
Kowalski
,
D.
,
1996
, “
Factors Affecting the Pullout Strength of Cancellous Bone
,”
ASME J. Biomech. Eng.
,
118
(3), pp.
391
398
.10.1115/1.2796022
12.
Larsson
,
S.
, and
Procter
,
P.
,
2011
, “
Optimising Implant Anchorage (Augmentation) During Fixation of Osteoporotic Fractures: Is There a Role for Bone-Graft Substitutes?
,”
Inj. Int. J. Care Inj.
,
42
(S2), pp.
S72
S76
.10.1016/j.injury.2011.06.019
13.
Ramaswamy
,
R.
,
Evans
,
S.
, and
Kosashvili
,
Y.
,
2010
, “
Holding Power of Variable Pitch Screws in Osteoporotic, Osteopenic and Normal Bone: Are All Screws Created Equal?
,”
Injury
,
41
(2), pp.
179
183
.10.1016/j.injury.2009.08.015
14.
Seebeck
,
J.
,
Goldhahn
,
J.
,
Morlock
,
M. M.
, and
Schneider
,
E.
,
2005
, “
Mechanical Behavior of Screws in Normal and Osteoporotic Bone
,”
Osteoporosis Int.
,
16
(2S), pp.
S107
S111
.10.1007/s00198-004-1777-0
15.
Patel
,
P. S. D.
,
Shepherd
,
D. E. T.
, and
Hukins
,
D. W. L.
,
2010
, “
The Effect of Screw Insertion Angle and Thread Type on the Pullout Strength of Bone Screws in Normal and Osteoporotic Cancellous Bone Models
,”
Med. Eng. Phys.
,
32
(8), pp.
822
828
.10.1016/j.medengphy.2010.05.005
16.
Huiskes
,
R.
, and
Chao
,
E. Y. S.
,
1983
, “
A Survey of Finite Element Analysis in Orthopedic Biomechanics: The First Decade
,”
J. Biomech.
,
16
(
6
), pp.
385
409
.10.1016/0021-9290(83)90072-6
17.
Helgason
,
B.
,
Taddei
,
F.
,
Pálsson
,
H.
,
Schileo
,
E.
,
Cristofolini
,
L.
,
Viceconti
,
M.
, and
Brynjólfsson
,
S.
,
2008
, “
A Modified Method for Assigning Material Properties to FE Models of Bones
,”
Med. Eng. Phys.
,
30
(
4
), pp.
444
453
.10.1016/j.medengphy.2007.05.006
18.
Wirth
,
A. J.
,
Muller
,
R.
, and
van Lenthe
,
G. H.
,
2012
, “
The Discrete Nature of Trabecular Bone Microarchitecture Affects Implant Stability
,”
J. Biomech.
,
45
(
6
), pp.
1060
1067
.10.1016/j.jbiomech.2011.12.024
19.
Goldstein
,
S. A.
,
Wilson
,
D. L.
,
Sonstegarij
,
D. A.
, and
Matthews
,
L. S.
,
1983
, “
The Mechanical Properties of Human Tibial Trabecular Bone as a Function of Metaphyseal Location
,”
J. Biomech.
,
16
(12), pp.
965
969
.10.1016/0021-9290(83)90097-0
20.
Keaveny
,
T. M.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
, and
Yeh
,
O. C.
,
2001
, “
Biomechanics of Trabecular Bone
,”
Annu. Rev. Biomed. Eng.
,
3
, pp.
307
333
.10.1146/annurev.bioeng.3.1.307
21.
Chen
,
S. I.
,
Lin
,
R. M.
, and
Chang
,
C. H.
,
2003
, “
Biomechanical Investigation of Pedicle Screw-Vertebrae Complex: A Finite Element Approach Using Bonded and Contact Interface Conditions
,”
Med. Eng. Phys.
,
25
(
4
), pp.
275
282
.10.1016/S1350-4533(02)00219-9
22.
Melchels
,
F. P. W.
,
Bertoldi
,
K.
,
Gabbrielli
,
R.
,
Velders
,
A. H.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2010
, “
Mathematically Defined Tissue Engineering Scaffold Architectures Prepared by Stereolithography
,”
Biomaterials
,
31
(
27
), pp.
6909
6916
.10.1016/j.biomaterials.2010.05.068
23.
Brown
,
C. J.
,
MacInnes
,
R. A.
,
Day
,
A.
,
Hess
,
B.
, and
Procter
,
P.
,
2013
, “
An Approximate Model for Cancellous Bone Screw Fixation
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
4
), pp.
443
450
.10.1080/10255842.2011.624516
24.
Ansys
, 2012, Ansys ® Academic Research, Release 13, Ansys Inc., Canonsburg, PA.
25.
Mimics®, v14.0, Materialise NV, Leuven, Belgium
.
26.
Hara
,
T.
,
Tanck
,
E.
,
Homminga
,
J.
, and
Huiskes
,
R.
,
2002
, “
The Influence of Microcomputed Tomography Threshold Variations on the Assessment of Structural and Mechanical Trabecular Bone Properties
,”
Bone
,
31
(
1
), pp.
107
109
.10.1016/S8756-3282(02)00782-2
27.
Kim
,
C. H.
,
Zhang
,
H.
,
Mikhail
,
G.
,
von Stechow
,
D.
,
Muller
,
R.
,
Kim
,
H. S.
,
Guo
,
X. E.
,
2007
, “
Effects of Thresholding Techniques on MicroCT-Based Finite Element Models of Trabecular Bone
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
481
486
.10.1115/1.2800767
28.
Guo
,
X. E.
, and
Kim
,
C. H.
,
2002
, “
Mechanical Consequence of Trabecular Bone Loss and Its Treatment: A Three-Dimensional Model Simulation
,”
Bone
,
30
(2), pp.
404
411
.10.1016/S8756-3282(01)00673-1
29.
van der Linden
,
J. C.
,
Verhaar
,
J. A.
, and
Weinans
,
H.
,
2002
, “
A Three-Dimensional Simulation of Age-Related Remodeling in Trabecular Bone
,”
J. Bone Miner. Res.
,
16
(4), pp.
688
696
.10.1359/jbmr.2001.16.4.688
30.
Doube
,
M.
,
Kłosowski
,
M. M.
,
Arganda-Carreras
,
I.
,
Cordelières
,
F.
,
Dougherty
,
R. P.
,
Jackson
,
J. S.
,
Schmid
,
B.
,
Hutchinson
,
J. R.
, and
Shefelbine
,
S. J.
,
2010
, “
BoneJ: Free and Extensible Bone Image Analysis in ImageJ
,”
Bone
,
47
(
6
), pp.
1076
1079
.10.1016/j.bone.2010.08.023
31.
Stryker, 2013, “Titanium—Titanium Wedge,” available at: http://www.stryker.com/en-us/products/Orthopaedics/SportsMedicine/UpperExtremity/Anchors/Titanium/TitaniumWedgeAnchor/index.htm, accessed November 1,
2012
.
32.
ArthroCare Sports Medicine, 2012, see http://international.arthrocaresportsmedicine.com/files/technique_guides/A50_4001D.pdf, accessed November 1,
2012
.
33.
Ashman
,
R. B.
,
Cowin
,
S. C.
,
Van Buskirk
,
W. C.
, and
Rice
,
J. C.
,
1984
, “
A Continuous Wave Technique for the Measurement of the Elastic Properties of Cortical Bone
,”
J. Biomech.
,
17
(6), pp.
349
361
.10.1016/0021-9290(84)90029-0
34.
Turner
,
C. H.
,
Rho
,
J.
,
Takano
,
Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
,
1999
, “
The Elastic Properties of Trabecular and Cortical Bone Tissues are Similar: Results From Two Microscopic Measurement Techniques
,”
J. Biomech.
,
32
(4), pp.
437
441
.10.1016/S0021-9290(98)00177-8
35.
Rincon Kohli
,
L.
,
2003
, “
Identification of a Multiaxial Failure Criterion for Human Trabecular Bone
,” PhD thesis, Faculté Sciences et Technique de l'Ingénieur, Institut de Genie Biomedical, Section de Genie Mécanique, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
36.
Yakacki
,
C. M
,
Griffis
,
F.
,
Poukalova
,
M.
, and
Gall
,
K.
,
2009
, “
Bearing Area: A New Indication for Suture Anchor Pullout Strength?
,”
J. Orthop. Res.
,
27
(8), pp.
1048
1054
.10.1002/jor.20856
37.
Asnis
,
S. E.
, and
Kyle
,
R. F.
,
1996
,
Cannulated Screw Fixation: Principles and Operative Techniques
,
Springer
,
New York
.
You do not currently have access to this content.