This paper describes a dual-arm teleoperation (master-slave) system which has been developed to explore the effect of haptics in robotics-assisted minimally invasive surgery (RAMIS). This setup is capable of measuring forces in 7 degrees of freedom (DOF) and fully reflecting them to the operator through two 7-DOF haptic interfaces. An application of the test bed is in enabling the evaluation of the effect of replacing haptic feedback by other sensory cues such as visual representation of haptic information (sensory substitution). This paper discusses the design rationale, kinematic analysis and dynamic modeling of the robot manipulators, and the control system developed for the setup. Using the accurate model developed in this paper, a highly transparent haptics-enabled system can be achieved and used in robot-assisted telesurgery. Validation results obtained through experiments are presented and demonstrate the correctness and effectiveness of the developed models. The application of the setup for two RAMIS surgical tasks, a suture manipulation task and a tumor localization task, is described with different haptics modalities available through the developed haptics-enabled system for each application.

References

References
1.
Trejos
,
A. L.
,
Patel
,
R. V.
, and
Naish
,
M. D.
,
2010
, “
Force Sensing and Its Applications in Minimally Invasive Surgery and Therapy: A Survey
,”
Proc. Inst. Mech. Eng., C: J. Mech. Eng. Sci.
,
224
(7), pp.
1435
1454
.10.1243/09544062JMES1917
2.
Intuitive Surgical, 2013, “The da Vinci Surgical System,” Intuitive Surgical Inc., Sunnyvale, CA, available at: http://www.intuitivesurgical.com
3.
Tavakoli
,
M.
,
Patel
,
R.
,
Moallem
,
M.
, and
Aziminejad
,
A.
,
2008
,
Haptics-Based Systems for Robot-Assisted Surgery and Telesurgery: Design, Control, and Experimentation
(New Frontiers in Robotics),
World Scientific Publishers
, Singapore.
4.
Tavakoli
,
M.
,
Patel
,
R. V.
, and
Moallem
,
M.
,
2005
, “
Haptic Interaction in Robot-Assisted Endoscopic Surgery: A Sensorized End-Effector
,”
Int. J. Med. Robotics Comput. Assist. Surg.
1
(
2
), pp.
53
63
.10.1002/rcs.16
5.
Cavusoglu
,
M. C.
,
Williams
,
W.
,
Tendick
,
F.
, and
Sastry
,
S. S.
,
2003
, “
Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking Towards the Future Applications
,”
Indus. Robot
,
30
(
1
), pp.
22
29
.10.1108/01439910310457670
6.
Tadano
,
K.
, and
Kawashima
,
K.
,
2007
, “
Development of a Master Slave System With Force Sensing Using Pneumatic Servo System for Laparoscopic Surgery
,”
IEEE International Conference on Robotics and Automation
, Rome, April 10–14, pp.
947
952
.10.1109/ROBOT.2007.363107
7.
Lum
,
M. J. H.
,
Friedman
,
D. C. W.
,
Sankaranarayanan
,
G.
,
King
,
H.
,
Fodero
,
K.
,
Leuschke
,
R.
,
Hannaford
,
B.
,
Rosen
,
J.
, and
Sinanan
,
M. N.
,
2009
, “
The RAVEN: Design and Validation of a Telesurgery System
,”
Int. J. Robotics Res.
,
28
(
9
), pp.
1183
1197
.10.1177/0278364909101795
8.
Salcudean
,
S. E.
,
Wong
,
S. N. M.
, and
Hollis
,
R. L.
,
1992
, “
A Force-Reflecting Teleoperation System With Magnetically Levitated Master and Wrist
,”
IEEE International Conference on Robotics and Automation
, Nice, France, May 12–14, pp.
1420
1426
.10.1109/ROBOT.1992.220151
9.
Das
,
H.
,
Zak
,
H.
,
Johnson
,
J.
,
Crouch
,
J.
, and
Frambach
,
D.
,
1999
, “
Evaluation of a Telerobotic System to Assist Surgeons in Microsurgery
,”
Comput. Aided Surg.
4
(
1
), pp.
15
25
.10.3109/10929089909148155
10.
Hunter
,
I. W.
,
Lafontaine
,
S. R.
,
Brenan
,
C. J. H.
, and
Jones
,
L. A.
,
1995
, “
Medical Robots and Micro Machines
,” Sixth International Symposium on Micro Machine and Human Science (
MHS '95
), Nagoya, Japan, October 4–6, pp.
25
30
.10.1109/MHS.1995.494213
11.
Institute of Robotics and Mechatronics, Robotics Systems, 2013, “MiroSurge—Telemanipulation in Minimally Invasive Surgery,” DLR, Oberpfaffenhofen-Wessling, Germany, available at: http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-3835/6288_read-9047/
12.
Quanser, 2014, “Quanser · Innovate · Educate,” Quanser Consulting Inc., Markham, ON, Canada, available at: http://www.quanser.com
13.
Stocco
,
L. J.
,
Salcudean
,
S. E.
, and
Sassani
,
F.
,
2001
, “
Optimal Kinematic Design of a Haptic Pen
,”
IEEE/ASME Trans. Mechatron.
,
6
(
3
), pp.
210
220
.10.1109/3516.951359
14.
Talasaz
,
A
.,
2012
, “
Haptics-Enabled Teleoperation for Robotics-Assisted Minimally Invasive Surgery
,” Ph.D. thesis,
The University of Western Ontario
, London, ON, Canada.
15.
Olsson
,
H.
,
Astrom
,
K. J.
,
Canudas de Wit
,
C.
,
Gafvert
,
M.
, and
Lischinsky
,
P.
,
1998
, “
Friction Models and Friction Compensation
,”
Eur. J. Control
,
4
(
3
), pp.
176
195
.10.1016/S0947-3580(98)70113-X
16.
Tholey
,
G.
, and
Desai
,
J. P.
,
2007
, “
A General-Purpose 7 DOF Haptic Device: Applications Toward Robot-Assisted Surgery
,”
IEEE/ASME Trans. Mechatron.
,
12
(
6
), pp.
662
669
.10.1109/TMECH.2007.910105
17.
ATI, “Multi-Axis Force/Torque Sensors,” ATI Industrial Automation, Apex, NC, available at: http://www.ati-ia.com/products/ft/sensors.aspx
18.
Kennedy
,
C. W.
, and
Desai
,
J. P.
,
2005
. “
Modeling and Control of the Mitsubishi PA-10 Robot Arm Harmonic Drive System
,”
IEEE/ASME Trans. Mechatron.
,
10
(
3
), pp.
263
274
.10.1109/TMECH.2005.848290
19.
Bompos
,
N. A.
,
Artemiadis
,
P. K.
,
Oikonomopoulos
,
A. S.
, and
Kyriakopoulos
,
K. J.
,
2007
, “
Modeling, Full Identification and Control of the Mitsubishi PA-10 Robot Arm
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Zurich, Switzerland, September 4–7.10.1109/AIM.2007.4412421
20.
Patel
,
R. V.
, and
Shadpey
,
F.
,
2005
, Control of Redundant Robot Manipulators: Theory and Experiments (Lecture Notes in Control and Information Science),
Springer
, Heidelberg, Germany.
21.
Patel
,
R. V.
,
Talebi
,
H. A.
,
Jayender
,
J.
, and
Shadpey
,
F.
,
2009
, “
A Robust Position and Force Control Strategy for 7-DOF Redundant Manipulators
,”
IEEE/ASME Trans. Mechatron.
,
14
(
5
), pp.
575
589
.10.1109/TMECH.2008.2009637
22.
Stotsky
,
A.
, and
Kolmanovsky
,
I.
,
2002
, “
Application of Input Estimation Techniques to Charge Estimation and Control in Automotive Engines
,”
Control Eng. Practice
,
10
(12), pp.
1371
1383
.10.1016/S0967-0661(02)00101-6
23.
Bassan
,
H.
,
Talasaz
,
A.
, and
Patel
,
R. V.
,
2009
, “
Design and Characterization of a 7-DOF Haptic Interface for Minimally Invasive Surgery Test-Bed
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2009
), St. Louis, MO, October 10–15, pp.
4098
4103
.10.1109/IROS.2009.5354211
24.
Khalil
,
H
.,
1996
, “
Adaptive Output Feedback Control of Nonlinear Systems Represented by Input-Output Models
,”
IEEE Trans. Autom. Control
,
41
(2), pp.
177
188
.10.1109/9.481517
25.
Seraji
,
H
.,
1989
, “
Configuration Control of Redundant Manipulators: Theory and Implementation
,”
IEEE Trans. Robotics Autom.
,
5
(
4
), pp.
472
490
.10.1109/70.88062
26.
Luh
,
J. Y. S.
,
Walker
,
M. W.
, and
Paul
,
R. P.
,
1980
, “
Resolved-Acceleration Control of Mechanical Manipulators
,”
IEEE Trans. Autom. Control
,
AC–25
(
3
), pp.
468
474
.10.1109/TAC.1980.1102367
27.
NDI, 2014, “Aurora,” Northern Digital Inc., Bakersfield, CA, available at: http://www.ndigital.com/medical/products/aurora/
28.
Talasaz
,
A.
,
Trejos
,
A. L.
, and
Patel
,
R. V.
,
2012
, “
Effect of Force Feedback on Performance of Robotics-Assisted Suturing
,”
4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Rome, June 24–27, pp.
823
828
.10.1109/BioRob.2012.6290910
29.
Talasaz
,
A.
, and
Patel
,
R. V.
,
2012
, “
Integration of Force Reflection With Tactile Sensing for Minimally Invasive Robotics-Assisted Tumor Localization
,”
IEEE Trans. Haptics
,
6
(
2
), pp.
217
228
.10.1109/TOH.2012.64
You do not currently have access to this content.