Because the leg is known to exhibit springlike behavior during the stance phase of running, several exoskeletons have attempted to place external springs in parallel with some or all of the leg during stance, but these designs have failed to permit natural kinematics during swing. To this end, a parallel-elastic exoskeleton is presented that introduces a clutch to disengage the parallel leg-spring and thereby not constrain swing-phase movements of the biological leg. A custom interference clutch with integrated planetary gear transmission, made necessary by the requirement for high holding torque but low mass, is presented and shown to withstand up to 190 N·m at 1.8 deg resolution with a mass of only 710 g. A suitable control strategy for locking the clutch at peak knee extension is also presented, where only an onboard rate gyroscope and exoskeletal joint encoder are employed as sensory inputs. Exoskeletal electromechanics, sensing, and control are shown to achieve design critieria necessary to emulate biological knee stiffness behaviors in running.

References

References
1.
Herr
,
H.
,
2009
. “
Exoskeletons and Orthoses: Classification, Design Challenges and Future Directions
,”
J. NeuroEng. Rehabil.
,
6
(
June
), p. 21.10.1186/1743-0003-6-21
2.
McMahon
,
T. A.
, and
Cheng
,
G. C.
,
1990
, “
The Mechanics of Running: How Does Stiffness Couple With Speed?
J. Biomech.
,
23
(S1), pp.
65
78
.10.1016/0021-9290(90)90042-2
3.
Farley
,
C. T.
, and
Ferris
,
D. P.
,
1998
, “
Biomechanics of Walking and Running: From Center of Mass Movement to Muscle Action
,”
Exercise Sport Sci. Rev.
,
26
(1), pp.
253
285
.10.1249/00003677-199800260-00012
4.
Novacheck
,
T. F.
,
1998
, “
The Biomechanics of Running
,”
Gait Posture
,
7
(1), pp.
77
95
.10.1016/S0966-6362(97)00038-6
5.
Farley
,
C. T.
, and
Gonzalez
,
O.
,
1996
, “
Leg Stiffness and Stride Frequency in Human Running
,”
J. Biomech.
,
29
(
2
), pp.
181
186
.10.1016/0021-9290(95)00029-1
6.
Biewener
,
A. A.
,
1998
, “
Muscle Function In Vivo: A Comparison of Muscles Used for Elastic Energy Savings Versus Muscles Used to Generate Mechanical Power
,”
Am. Zool.
,
38
(4), pp.
703
717
.10.1093/icb/38.4.703
7.
Alexander
,
R. M.
,
1991
, “
Energy-Saving Mechanisms in Walking and Running
,”
J. Exp. Biol.
,
160
(1), pp.
55
69
.
8.
Cavagna
,
G. A.
,
Heglund
,
N. C.
, and
Taylor
,
C. R.
,
1977
, “
Mechanical Work in Terrestrial Locomotion: Two Basic Mechanisms for Minimizing Energy Expenditure
,”
Am. J. Physiol. Regul., Integr., Comp. Physiol.
,
233
(5), pp.
243
261
.
9.
McMahon
,
T. A.
,
1984
,
Muscles, Reflexes, and Locomotion
,
Princeton University
,
Princeton, NJ
.
10.
Rouse
,
E. J.
,
Gregg
,
R. D.
,
Hargrove
,
L. J.
, and
Sensinger
,
J. W.
,
2013
, “
The Difference Between Stiffness and Quasi-Stiffness in the Context of Biomechanical Modeling
,”
IEEE Trans. Biomed. Eng.
,
60
(
2
), pp.
562
568
.10.1109/TBME.2012.2230261
11.
Ferris
,
D. P.
,
1998
, “
Running in the Real World: Adjusting Leg Stiffness for Different Surfaces
,”
Proc. Biol. Sci.
,
265
(1400), pp.
989
994
.10.1098/rspb.1998.0388
12.
Kerdok
,
A. E.
,
Biewener
,
A. A.
,
McMahon
,
T. A.
,
Weyand
,
P. G.
, and
Herr
,
H. M.
,
2002
, “
Energetics and Mechanics of Human Running on Surfaces of Different Stiffnesses
,”
J. Appl. Physiol.
,
92
(Feb.), pp.
469
478
.10.1152/japplphysiol.01164.2000
13.
Ferris
,
D. P.
,
Liang
,
K.
, and
Farley
,
C. T.
,
1999
, “
Runners Adjust Leg Stiffness for Their First Step on a New Running Surface
,”
J. Biomech.
,
32
(8), pp.
787
794
.10.1016/S0021-9290(99)00078-0
14.
Yagn
,
N.
,
1890
, “
Apparatus for Facilitating Walking, Running, and Jumping
,” U.S. Patent Nos. 420179, 438830, and 440684.
15.
Grabowski
,
A. M.
, and
Herr
,
H. M.
,
2009
, “
Leg Exoskeleton Reduces the Metabolic Cost of Human Hopping
,”
J. Appl. Physiol.
,
107
(Sept.), pp.
670
678
.10.1152/japplphysiol.91609.2008
16.
Ferris
,
D. P.
,
Bohra
,
Z. A.
,
Lukos
,
J. R.
, and
Kinnaird
,
C. R.
,
2006
, “
Neuromechanical Adaptation to Hopping With an Elastic Ankle-Foot Orthosis
,”
J. Appl. Physiol.
,
100
(Jan.), pp.
163
170
.10.1152/japplphysiol.00821.2005
17.
Farris
,
D. J.
, and
Sawicki
,
G. S.
,
2011
, “
The Mechanics and Energetics of Human Walking and Running: A Joint Level Perspective
,”
J. R. Soc. Interface
,
9
(
66
), pp.
110
118
.10.1098/rsif.2011.0182
18.
Browning
,
R. C.
,
Modica
,
J. R.
,
Kram
,
R.
, and
Goswami
,
A.
,
2007
, “
The Effects of Adding Mass to the Legs on the Energetics and Biomechanics of Walking
,”
Med. Sci. Sports Exercise
,
39
(3), pp.
515
525
.10.1249/mss.0b013e31802b3562
19.
Elliott
,
G.
,
Sawicki
,
G.
,
Marecki
,
A.
, and
Herr
,
H.
,
2013
, “
The Biomechanics and Energetics of Human Running Using an Elastic Knee Exoskeleton
,”
IEEE 13th International Conference on Rehabilitation Robotics
(
ICORR
), Seattle, WA, June 24–26.10.1109/ICORR.2013.6650418
You do not currently have access to this content.