Bone transport distraction osteogenesis (BTDO) is a surgical procedure that has been used over the last 30 years for the correction of segmental defects produced mainly by trauma and oncological resections. Application of BTDO has several clinical advantages over traditional surgical techniques. Over the past few years, several BTDO devices have been introduced to reconstruct mandibular bone defects. Based on the location and outline of the defect, each device requires a uniquely shaped reconstruction plate. To date, no biomechanical evaluations of mandibular BTDO devices have been reported in the literature. The present study evaluated the mechanical behavior of three different shaped prototypes of a novel mandibular bone transport reconstruction plate and its transport unit for the reconstruction of segmental bone defects of the mandible by using numerical models complemented with mechanical laboratory tests to characterize strength, fatigue, and stability. The strength test evaluated device failures under extreme loads and was complemented with optimization procedures to improve the biomechanical behavior of the devices. The responses of the prototypes were characterized to improve their design and identify weak and strong regions in order to avoid posterior device failure in clinical applications. Combinations of the numerical and mechanical laboratory results were used to compare and validate the models. In addition, the results remark the importance of reducing the number of animals used in experimental tests by increasing computational and in vitro trials.

References

References
1.
American Cancer Society,
2012
, “
Cancer Facts and Figures
,” http://www.cancer.org
2.
Bell
,
R. B.
,
2007
, “
The Role of Oral and Maxillofacial Surgery in the Trauma Care Center
,”
J. Oral Maxillofac. Surg.
,
65
(
12
), pp.
2544
2553
.10.1016/j.joms.2007.02.003
3.
Klotch
,
D. W.
,
Gal
,
T. J.
, and
Gal
,
R. L.
,
1999
, “
Assessment of Plate Use for Mandibular Reconstruction: Has Changing Technology Made a Difference?
,”
Otolaryngol. Head Neck Surg.
,
121
(
4
), pp.
388
392
.10.1016/S0194-5998(99)70226-3
4.
Herford
,
A. S.
,
2004
, “
Use of a Plate-Guided Distraction Device for Transport Distraction Osteogenesis of the Mandible
,”
J. Oral Maxillofac. Surg.
,
62
(
4
), pp.
412
420
.10.1016/j.joms.2003.06.010
5.
Castaño
,
F. J.
,
Troulis
,
M. J.
,
Glowacki
,
J.
,
Kaban
,
L. B.
, and
Yates
,
K. E.
,
2001
, “
Proliferation of Masseter Myocytes After Distraction Osteogenesis of the Porcine Mandible
,”
J. Oral Maxillofac. Surg.
,
59
(
3
), pp.
302
307
.10.1053/joms.2001.21000
6.
Cope
,
J. B.
,
Samchukov
,
M. L.
, and
Cherkashin
,
A. M.
,
1999
, “
Mandibular Distraction Osteogenesis: A Historic Perspective and Future Directions
,”
Am. J. Orthod. Dentofacial Orthop.
,
115
(
4
), pp.
448
460
.10.1016/S0889-5406(99)70266-0
7.
Costantino
,
P. D.
,
Shybut
,
G.
,
Friedman
,
C. D.
,
Pelzer
,
H. J.
,
Masini
,
M.
,
Shindo
,
M. L.
, and
Sisson
,
G. A.
, Sr
.,
1990
, “
Segmental Mandibular Regeneration by Distraction Osteogenesis. An Experimental Study
,”
Arch. Otolaryngol. Head Neck Surg.
,
116
(
5
), pp.
535
545
.10.1001/archotol.1990.01870050035003
8.
van Sickels
,
J. E.
, and
Reddy
,
L. V.
,
2008
, “
Distractor Design and Options
,”
Atlas Oral Maxillofac. Surg. Clin. North Am.
,
16
(
2
), pp.
159
167
.10.1016/j.cxom.2008.04.002
9.
Zapata
,
U.
,
Elsalanty
,
M. E.
,
Dechow
,
P. C.
, and
Opperman
,
L. A.
,
2010
, “
Biomechanical Configurations of Mandibular Transport Distraction Osteogenesis Devices
,”
Tissue Eng. Part B: Rev.
,
16
(
3
), pp.
273
283
.10.1089/ten.teb.2009.0502
10.
Uckan
,
S.
,
Veziroglu
,
F.
, and
Arman
,
A.
,
2006
, “
Unexpected Breakage of Mandibular Midline Distraction Device: Case Report
,”
Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.
,
102
(
6
), pp.
e21
e25
.10.1016/j.tripleo.2006.05.025
11.
Panjabi
,
M. M.
,
1988
, “
Biomechanical Evaluation of Spinal Fixation Devices: I. A Conceptual Framework
,”
Spine
,
13
(
10
), pp.
1129
1134
.10.1097/00007632-198810000-00013
12.
Alkan
,
A.
,
Ozer
,
M.
,
Bas
,
B.
,
Bayram
,
M.
,
Celebi
,
N.
,
Inal
,
S.
, and
Ozden
,
B.
,
2007
, “
Mandibular Symphyseal Distraction Osteogenesis: Review of Three Techniques
,”
Int. J. Oral Maxillofac. Surg.
,
36
(
2
), pp.
111
117
.10.1016/j.ijom.2006.11.005
13.
Djasim
,
U. M.
,
Wolvius
,
E. B.
,
van Neck
,
J. W.
,
van Wamel
,
A.
,
Weinans
,
H.
, and
van der Wal
,
K. G. H.
,
2008
, “
Single Versus Triple Daily Activation of the Distractor: No Significant Effects of Frequency of Distraction on Bone Regenerate Quantity and Architecture
,”
J. Craniomaxillofac. Surg.
,
36
(
3
), pp.
143
151
.10.1016/j.jcms.2007.11.002
14.
Wu
,
Z.
,
Liu
,
Y.
,
Singare
,
S.
, and
Li
,
D.
,
2007
, “
Animal Model for Evaluation of Strain Gauge in Mandibular Distraction Osteogenesis in Rabbits
,”
Br. J. Oral Maxillofac. Surg.
,
45
(
8
), pp.
633
636
.10.1016/j.bjoms.2007.04.004
15.
Djasim
,
U. M.
,
Wolvius
,
E. B.
,
van Neck
,
J. W.
,
Weinans
,
H.
, and
van der Wal
,
K. G. H.
,
2007
, “
Recommendations for Optimal Distraction Protocols for Various Animal Models on the Basis of a Systematic Review of the Literature
,”
Int. J. Oral Maxillofac. Surg.
,
36
(
10
), pp.
877
883
.10.1016/j.ijom.2007.05.012
16.
Haug
,
R. H.
,
Nuveen
,
E. J.
,
Barber
,
J. E.
, and
Storoe
,
W.
,
1998
, “
An In Vitro Evaluation of Distractors Used for Osteogenesis
,”
Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.
,
86
(
6
), pp.
648
659
.10.1016/S1079-2104(98)90198-6
17.
Burstein
,
F. D.
,
Lukas
,
S.
, and
Forsthoffer
,
D.
,
2008
, “
Measurement of Torque During Mandibular Distraction
,”
J. Craniofac. Surg.
,
19
(
3
), pp.
644
647
.10.1097/SCS.0b013e31816ae1a8
18.
Cheung
,
L. K.
,
Zhang
,
Q.
,
Wong
,
M. C. M.
, and
Wong
,
L. L. S.
,
2003
, “
Stability Consideration for Internal Maxillary Distractors
,”
J. Craniomaxillofac. Surg.
,
31
(
3
), pp.
142
148
.10.1016/S1010-5182(03)00005-2
19.
Meyer
,
C.
,
Martin
,
E.
,
Kahn
,
J. L.
, and
Zink
,
S.
,
2007
, “
Development and Biomechanical Testing of a New Osteosynthesis Plate (TCP®) Designed to Stabilize Mandibular Condyle Fractures
,”
J. Craniomaxillofac. Surg.
,
35
(
2
), pp.
84
90
.10.1016/j.jcms.2006.11.006
20.
Ryoyama
,
D.
,
Sawaki
,
Y.
, and
Ueda
,
M.
,
2004
, “
Experimental Study of Mechanical Analysis in Mandibular Lengthening: Application of Strain Gauge Measurement
,”
Int. J. Oral Maxillofac. Surg.
,
33
(
3
), pp.
294
300
.10.1006/ijom.2003.0474
21.
Cope
,
J. B.
,
Yamashita
,
J.
,
Healy
,
S.
,
Dechow
,
P. C.
, and
Harper
,
R. P.
,
2000
, “
Force Level and Strain Patterns During Bilateral Mandibular Osteodistraction
,”
J. Oral Maxillofac. Surg.
,
58
(
2
), pp.
171
178
.10.1016/S0278-2391(00)90333-1
22.
Campos
,
T. N.
,
Adachi
,
L. K.
,
Chorres
,
J. E.
,
Campos
,
A. C.
,
Muramatsu
,
M.
, and
Gioso
,
M. A.
,
2006
, “
Holographic Interferometry Method for Assessment of Static Load Stress Distribution in Dog Mandible
,”
Braz. Dent. J.
,
17
(
4
), pp.
279
284
.10.1590/S0103-64402006000400003
23.
Meyer
,
C.
,
Kahn
,
J. L.
,
Boutemi
,
P.
, and
Wilk
,
A.
,
2002
, “
Photoelastic Analysis of Bone Deformation in the Region of the Mandibular Condyle During Mastication
,”
J. Craniomaxillofac. Surg.
,
30
(
3
), pp.
160
169
.10.1054/jcms.2002.0297
24.
Osborn
,
J. W.
, and
Baragar
,
F. A.
,
1985
, “
Predicted Pattern of Human Muscle Activity During Clenching Derived From a Computer Assisted Model: Symmetric Vertical Bite Forces
,”
J. Biomech.
,
18
(
8
), pp.
599
612
.10.1016/0021-9290(85)90014-4
25.
Barbenel
,
J. C.
,
1972
, “
Biomechanics of the Temporomandibular Joint: A Theoretical Study
,”
J. Biomech.
,
5
(
3
), pp.
251
256
.10.1016/0021-9290(72)90039-5
26.
Nickel
,
J. C.
,
Yao
,
P.
,
Spalding
,
P. M.
, and
Iwasaki
,
L. R.
,
2002
, “
Validated Numerical Modeling of the Effects of Combined Orthodontic and Orthognathic Surgical Treatment on TMJ Loads and Muscle Forces
,”
Am. J. Orthod. Dentofacial Orthop.
,
121
(
1
), pp.
73
83
.10.1067/mod.2002.120138
27.
Lovald
,
S. T.
,
Wagner
,
J. D.
, and
Baack
,
B.
,
2009
, “
Biomechanical Optimization of Bone Plates Used in Rigid Fixation of Mandibular Fractures
,”
J. Oral Maxillofac. Surg.
,
67
(
5
), pp.
973
985
.10.1016/j.joms.2008.12.032
28.
Korioth
,
T. W. P.
, and
Versluis
,
A.
,
1997
, “
Modeling the Mechanical Behavior of the Jaws and Their Related Structures by Finite Element (FE) Analysis
,”
Crit. Rev. Oral Biol. Med.
,
8
(
1
), pp.
90
104
.10.1177/10454411970080010501
29.
Rohrle
,
O.
, and
Pullan
,
A. J.
,
2007
, “
Three-Dimensional Finite Element Modelling of Muscle Forces During Mastication
,”
J. Biomech.
,
40
(
15
), pp.
3363
3372
.10.1016/j.jbiomech.2007.05.011
30.
Cattaneo
,
P. M.
,
Kofod
,
T.
,
Dalstra
,
M.
, and
Melsen
,
B.
,
2005
, “
Using the Finite Element Method to Model the Biomechanics of the Asymmetric Mandible Before, During and After Skeletal Correction by Distraction Osteogenesis
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
3
), pp.
157
165
.10.1080/10255840500237953
31.
Boccaccio
,
A.
,
Pappalettere
,
C.
, and
Kelly
,
D. J.
,
2007
, “
The Influence of Expansion Rates on Mandibular Distraction Osteogenesis: A Computational Analysis
,”
Ann. Biomed. Eng.
,
35
(
11
), pp.
1940
1960
.10.1007/s10439-007-9367-x
32.
Kofod
,
T.
,
Cattaneo
,
P. M.
,
Dalstra
,
M.
, and
Melsen
,
B.
,
2005
, “
Three-Dimensional Finite Element Analysis of the Mandible and Temporomandibular Joint During Vertical Ramus Elongation by Distraction Osteogenesis
,”
J. Craniofac. Surg.
,
16
(
4
), pp.
586
593
.10.1097/01.SCS.0000157305.60505.B5
33.
Savoldelli
,
C.
,
Bouchard
,
P. O.
,
Manière-Ezvan
,
A.
,
Bettega
,
G.
, and
Tillier
,
Y.
,
2012
, “
Comparison of Stress Distribution in the Temporomandibular Joint During Jaw Closing Before and After Symphyseal Distraction: A Finite Element Study
,”
Int. J. Oral Maxillofac. Surg.
,
41
(
12
), pp.
1474
1482
.10.1016/j.ijom.2012.06.005
34.
Reina-Romo
,
E.
,
Gómez-Benito
,
M.
,
Sampietro-Fuentes
,
A.
,
Domínguez
,
J.
, and
García-Aznar
,
J.
,
2011
, “
Three-Dimensional Simulation of Mandibular Distraction Osteogenesis: Mechanobiological Analysis
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
35
43
.10.1007/s10439-010-0166-4
35.
Cordey
,
J.
, and
Gautier
,
E.
,
1999
, “
Strain Gauges Used in the Mechanical Testing of Bones. Part I: Theoretical and Technical Aspects
,”
Injury
,
30
(
Suppl. 1
), pp.
7
13
.10.1016/S0020-1383(99)00120-5
36.
Rubio-Bueno
,
P.
,
Padrón
,
A.
,
Villa
,
E.
, and
Díaz-González
,
F. J.
,
2000
, “
Distraction Osteogenesis of the Ascending Ramus for Mandibular Hypoplasia Using Extraoral or Intraoral Devices: A Report of 8 Cases
,”
J. Oral Maxillofac. Surg.
,
58
(
6
), pp.
593
599
.10.1016/S0278-2391(00)90146-0
37.
Ortakoglu
,
K.
,
Karacay
,
S.
,
Sencimen
,
M.
,
Akin
,
E.
,
Ozyigit
,
A. H.
, and
Bengi
,
O.
,
2007
, “
Distraction Osteogenesis in a Severe Mandibular Deficiency
,”
Head Face Med.
,
3
(
1
), p. 7.10.1186/1746-160X-3-710.1186/1746-160X-3-7
38.
van der Bilt
,
A.
,
Tekamp
,
A.
,
van der Glas
,
H.
, and
Abbink
,
J.
,
2008
, “
Bite Force and Electromyograpy During Maximum Unilateral and Bilateral Clenching
,”
Eur. J. Oral Sci.
,
116
(
3
), pp.
217
222
.10.1111/j.1600-0722.2008.00531.x
39.
Throckmorton
,
G. S.
,
Buschang
,
P. H.
, and
Ellis
,
E.
, III
,
1996
, “
Improvement of Maximum Occlusal Forces After Orthognathic Surgery
,”
J. Oral Maxillofac. Surg.
,
54
(
9
), pp.
1080
1086
.10.1016/S0278-2391(96)90165-2
40.
Hylander
,
W. L.
,
1978
, “
Incisal Bite Force Direction in Humans and the Functional Significance of Mammalian Mandibular Translation
,”
Am. J. Phys. Anthropol.
,
48
(
1
), pp.
1
7
.10.1002/ajpa.1330480102
41.
Paphangkorakit
,
J.
, and
Osborn
,
J. W.
,
1998
, “
Effects on Human Maximum Bite Force of Biting on a Softer or Harder Object
,”
Arch. Oral Biol.
,
43
(
11
), pp.
833
839
.10.1016/S0003-9969(98)00073-9
42.
Harada
,
K.
,
Watanabe
,
M.
,
Ohkura
,
K.
, and
Enomoto
,
S.
,
2000
, “
Measure of Bite Force and Occlusal Contact Area Before and After Bilateral Sagittal Split Ramus Osteotomy of the Mandible Using a New Pressure-Sensitive Device: A Preliminary Report
,”
J. Oral Maxillofac. Surg.
,
58
(
4
), pp.
370
373
.10.1016/S0278-2391(00)90913-3
43.
Nagai
,
I.
,
Tanaka
,
N.
,
Noguchi
,
M.
,
Suda
,
Y.
,
Sonoda
,
T.
, and
Kohama
,
G.
,
2001
, “
Changes in Occlusal State of Patients With Mandibular Prognathism After Orthognathic Surgery: A Pilot Study
,”
Br. J. Oral Maxillofac. Surg.
,
39
(
6
), pp.
429
433
.10.1054/bjom.2001.0681
44.
Boyer
,
R.
,
Welsch
,
G.
, and
Collings
,
E.
,
2007
,
Material Properies Handbook: Titanium Alloys
,
ASM International
,
Materials Park, OH
.
45.
Cordey
,
J.
, and
Gautier
,
E.
,
1999
, “
Strain Gauges Used in the Mechanical Testing of Bones. Part II: ‘In Vitro’ and ‘In Vivo’ Technique
,”
Injury
,
30
(
Suppl. 1
), pp.
14
20
.10.1016/S0020-1383(99)00121-7
46.
Robinson
,
R. C.
,
O'Neal
,
P. J.
, and
Robinson
,
G. H.
,
2001
, “
Mandibular Distraction Force: Laboratory Data and Clinical Correlation
,”
J. Oral Maxillofac. Surg.
,
59
(
5
), pp.
539
544
.10.1053/joms.2001.22688
47.
de Las Casas
,
E. B.
,
de Almeida
,
A. F.
,
Cimini
,
C. A.
, Jr.
,
Gomes
,
P. D. T. V.
,
Cornacchia
,
T. P. M.
, and
Saffar
,
J. M. E.
,
2007
, “
Determination of Tangential and Normal Components of Oral Forces
,”
J. Appl. Oral Sci.
,
15
(
1
), pp.
70
76
.10.1590/S1678-77572007000100015
48.
Komuro
,
Y.
,
Takato
,
T.
,
Harii
,
K.
, and
Yonemara
,
Y.
,
1994
, “
The Histologic Analysis of Distraction Osteogenesis of the Mandible in Rabbits
,”
Plast. Reconstr. Surg.
,
94
(
1
), pp.
152
159
.10.1097/00006534-199407000-00017
49.
McCarthy
,
J. G.
,
Stelnicki
,
E. J.
,
Mehrara
,
B. J.
, and
Longaker
,
M. T.
,
2001
, “
Distraction Osteogenesis of the Craniofacial Skeleton
,”
Plast. Reconstr. Surg.
,
107
(
7
), pp.
1812
1827
.10.1097/00006534-200106000-00029
50.
Haug
,
R. H.
,
Barber
,
J. E.
, and
Punjabi
,
A. P.
,
1999
, “
An In Vitro Comparison of the Effect of Number and Pattern of Positional Screws on Load Resistance
,”
J. Oral Maxillofac. Surg.
,
57
(
3
), pp.
300
308
.10.1016/S0278-2391(99)90677-8
51.
Hibbeller
,
R. C.
,
2010
,
Mechanics of Materials
,
Prentice Hall
,
Englewood Cliffs, NJ
.
52.
Zeng
,
R. S.
,
Zhang
,
P.
, and
Wang
,
C.
,
2008
, “
Osteotomy With Titanium-Nickel Shape Memory Alloy Distracter for Repairing Mandibular Defects in Dogs
,”
J. Clin. Rehab. Tissue Eng. Res.
,
12
(
2
), pp.
217
220
.
53.
Zhou
,
H. Z.
,
Hu
,
M.
,
Hu
,
K. J.
,
Yao
,
J.
, and
Liu
,
Y. P.
,
2006
, “
Transport Distraction Osteogenesis Using Nitinol Spring: An Exploration in Canine Mandible
,”
J. Craniofac. Surg.
,
17
(
5
), pp.
943
949
.10.1097/01.scs.0000236437.74850.26
54.
Zheng
,
X. H.
,
Tian
,
W. D.
,
Long
,
J.
,
Jing
,
W.
, and
Li
,
S. W.
,
2005
, “
Mandibular Distraction Osteogenesis: An Experimental Study in Goats
,”
J. Sichuan Univ. (Med. Sci. Ed.)
,
36
(
3
), pp.
386
389
.
55.
Eski
,
M.
,
Nisanci
,
M.
,
Cil
,
Y.
,
Sengezer
,
M.
, and
Ozcan
,
A.
,
2005
, “
A Custom-Made Distraction Device for Experimental Mandibular Distraction Osteogenesis
,”
J. Craniofac. Surg.
,
16
(
4
), pp.
675
683
.10.1097/01.scs.0000168778.01851.29
You do not currently have access to this content.