In endovascular interventions, thin, flexible instruments are inserted through the skin into the blood vessels to diagnose and treat various diseases of the vascular system. One drawback is that the instruments are difficult to maneuver in the desired direction due to limitations in shape and flexibility. Another disadvantage is that the interventions are performed under intermittent fluoroscopy/angiography imaging. Magnetic resonance imaging (MRI) may offer advantages over X-ray guidance. It presents a good soft tissue contrast without the use of nephrotoxic media or ionizing radiation. The aim of this study is to develop a guidewire that is compatible with MRI and includes a steerable segment at the tip. This added degree-of-freedom may improve the maneuverability of the devices thereby the efficiently and safety of the navigation. A 1.6 m (5 ft, 3 in.) long and 0.035 in. diameter guidewire that consists of MR compatible materials and has a flexible tip was designed. The only metallic part was a nitinol rod that was implemented at the distal flexible tip. To limit the risk of heating in the MRI, this rod was kept shorter than 30 mm. The tip could be deflected in one direction by pulling on a Dyneema wire that was placed in the lumen of the shaft of the guidewire. To drive the steerable tip, a handle that could be easily attached/detached from the instrument was designed and implemented. Using the handle, the tip of the 1.60 m long guidewire prototype could be actuated to reach angles from 30 deg to 250 deg. The handle could easily be placed on and removed from the guidewire, so conventional 0.035 in.–compatible catheters could slide over from the proximal end. However, in order to make the guidewire more efficient to enter a bifurcation, the stiffness of the tip should progressively increase from its proximal to its distal end. The guidewire was imaged in a 1.5T MRI using real-time imaging without producing artifacts that would have shaded the anatomy. It was possible to assemble a guidewire with a steerable segment in the required size, using MR compatible materials. Therefore, the current design is a promising proof of concept and allowed us to clearly identify the features that need to be improved in order to come to a clinically applicable instrument.

References

References
1.
Di Marco
,
A. N.
,
Riga
,
C. V.
,
Hamady
,
M.
,
Cheshire
,
N. J. W.
, and
Bicknell
,
C. D.
,
2010
, “
Robotic and Navigational Technologies in Endovascular Surgery
,”
Vascular Disease Management
,
7
(
1
), pp.
E15
E19
.
2.
Fu
,
Y.
,
Liu
,
H.
,
Huang
,
W.
,
Wang
,
S.
, and
Liang
,
Z.
,
2009
, “
Steerable Catheters in Minimally Invasive Vascular Surgery
,”
Int.J. Med. Robotics Comput. Assisted Surgery
,
5
(
4
), pp.
381
391
.10.1002/rcs.282
3.
Dankelman
,
J.
,
Wentink
,
M.
,
Grimbergen
,
C. A.
,
Stassen
,
H. G.
, and
Reekers
,
J.
,
2004
, “
Does Virtual Reality Training Make Sense in Interventional Radiology? Training Skill-, Rule- and Knowledge-Based Behavior
,”
Cardiovasc. Interventional Radiol.
,
27
(
7
), pp.
417
421
.10.1007/s00270-004-0250-y
4.
Schneider
,
P.
,
2008
,
Endovascular Skills: Guidewire and Catheter Skills for Endovascular Surgery
,
Informa Healthcare
,
New York
, pp. 57–59, 65.
5.
Bakker
,
N. H.
,
Tanase
,
D.
,
Reekers
,
J. A.
, and
Grimbergen
,
C. A.
,
2002
, “
Evaluation of Vascular and Interventional Procedures With Time–Action Analysis: a Pilot Study
,”
J. Vasc. Interventional Radiol.
,
13
(
5
), pp.
483
488
.10.1016/S1051-0443(07)61528-0
6.
Nordon
,
I. M.
,
Hinchliffe
,
R. J.
,
Holt
,
P. J.
,
Loftus
,
I. M.
, and
Thompson
,
M. M.
,
2010
, “
The Requirement for Smart Catheters for Advanced Endovascular Applications
,”
Proc. IMechE Part H
,
224
(
6
), pp.
743
749
.10.1243/09544119JEIM685
7.
Razavi
,
R.
,
Hill
,
D. L.
,
Keevil
,
S. F.
,
Miquel
,
M. E.
,
Muthurangu
,
V.
,
Hegde
,
S.
,
Rhode
,
K.
,
Barnett
,
M.
,
van Vaals
,
J.
,
Hawkes
,
D. J.
, and
Baker
,
E.
,
2003
, “
Cardiac Catheterisation Guided by MRI in Children and Adults With Congenital Heart Disease
,”
Lancet
,
362
(
9399
), pp.
1877
1882
.10.1016/S0140-6736(03)14956-2
8.
Sharma
,
P.
, and
Kyriakides
,
C.
,
2007
, “
Surveillance of Patients Post-Endovascular Aneurysm Repair
,”
Postgraduate Med. J.
,
83
(
986
), pp.
750
753
.10.1136/pgmj.2007.062851
9.
Lederman
,
R. J.
,
2008
,
Contemporary Cardiology: Cardiovascular Magnetic Resonance Imaging
,
Humana Press
,
Totowa
, 32, pp.
711
733
.
10.
Mekle
,
R.
,
Hofmann
,
E.
,
Scheffler
,
K.
, and
Bilecen
,
D.
,
2005
, “
A Polymer-Based MR-Compatible Guidewire: A Study to Explore New Prospects for Interventional Peripheral Magnetic Resonance Angiography (IPMRA)
,”
J. Magn. Reson. Imag.
,
23
(
2
), pp.
145
155
.10.1002/jmri.20486
11.
Krombach
,
G. A.
,
2010
, “
Interventional MRI–Vascular Applications
,”
8th Interventional MRI Symposium
, Leipzig, Germany, September 24-25, Paper No. V-44, pp.
128
130
, available at: http://www-e.uni-magdeburg.de/jkrug/docs/IMRI2010_Abstract_Book.pdf
12.
Kos
,
S.
,
Huegli
,
R.
,
Hofmann
,
E.
,
Quick
,
H. H.
,
Kuehl
,
H.
,
Aker
,
S.
,
Kaiser
,
G. M.
,
Borm
,
P. J.
,
Jacob
,
A. L.
, and
Bilecen
,
D.
,
2009
, “
MR-Compatible Polyetheretherketone-Based Guide Wire Assisting MR-Guided Stenting of Iliac and Supraaortic Arteries in Swine: Feasibility Study
,”
Mini. Invas. Ther. Alli. Techno.
,
18
(
3
), pp.
181
188
.10.1080/13645700902921971
13.
Buecker
,
A.
,
2006
, “
Safety of MRI-Guided Vascular Interventions
,”
Mini. Invas. Ther. Alli. Techno.
,
15
(
2
), pp.
65
70
.10.1080/13645700600640717
14.
Kos
,
S.
,
Huegli
,
R.
,
Hofmann
,
E.
,
Quick
,
H. H.
,
Kuehl
,
H.
,
Aker
,
S.
,
Kaiser
,
G. M.
,
Borm
,
P. J.
,
Jacob
,
A. L.
, and
Bilecen
,
D.
,
2009
, “
Feasibility of Real-Time Magnetic Resonance-Guided Angioplasty and Stenting of Renal Arteries In Vitro and in Swine, Using a New Polyetheretherketone-Based Magnetic Resonance-Compatible Guidewire
,”
Investigative Radiology
,
44
(
4
), pp.
234
241
.10.1097/RLI.0b013e31819b00f1
15.
Walsh
,
E.
,
Brott
,
B.
,
Johnson
,
V. Y.
,
Venugopalan
,
R.
, and
Anayiotos
,
A.
,
2008
, “
Assessment of Passive Cardiovascular Implant Devices for MRI Compatibility
,”
Technology and Health Care
,
16
(
4
), pp.
233
245
.
16.
Yeung
,
C. J.
,
Karmarkar
,
P.
,
McVeigh
,
E. R.
,
2007
, “
Minimizing rf Heating of Conducting Wires in MRI
,”
Magn. Reson. Med.
,
58
(
5
), pp.
1028
1034
.10.1002/mrm.21410
17.
Krueger
,
S.
,
Schmitz
,
S.
,
Weiss
,
S.
,
Wirtz
,
D.
,
Linssen
,
M.
,
Schade
,
H.
,
Kraemer
,
N.
,
Spuentrup
,
E.
,
Krombach
,
G.
, and
Buecker
,
A.
,
2008
, “
An MR Guidewire Based on Micropultruded Fiber-Reinforced Material
,”
Magn. Reson. Med.
,
60
(
5
), pp.
1190
1196
.10.1002/mrm.21743
18.
Williams
,
D.
,
2003
, “
Revisiting the Definition of Biocompatibility
,”
Medical Device Technology
,
14
(
8
), pp.
10
13
.
19.
Buecker
,
A.
,
Spuentrup
,
E.
,
Schmitz-Rode
,
T.
,
Kinzel
,
S.
,
Pfeffer
,
J.
,
Hohl
,
C.
,
van Vaals
,
J. J.
, and
Günther
,
R. W.
,
2004
, “
Use of a Nonmetallic Guide Wire for Magnetic Resonance-Guided Coronary Artery Catheterization
,”
Investigative Radiology
,
39
(
11
), pp.
656
660
.10.1097/00004424-200411000-00002
20.
Bakker
,
C. J.
,
Smits
,
H. F.
,
Bos
,
C.
,
van der Weide
,
R.
,
Zuiderveld
,
K. J.
,
van Vaals
,
J.
J.
,
Hurtak
,
W. F.
,
Viergever
,
M. A.
, and
Mali
,
W. P.
,
1998
, “
MR-Guided Balloon Angioplasty: In Vitro Demonstration of the Potential of MRI for Guiding, Monitoring, and Evaluating Endovascular Interventions
,”
J. Magn. Reson. Imag.
,
8
(
1
), pp.
245
250
.10.1002/jmri.1880080141
21.
Peeters
,
J. M.
,
Seppenwoolde
,
J.-H.
,
Bakker
,
C. J.
, and
Bartels
,
L. W.
,
2006
, “
A Safe and Practical Guide Wire for Use During Passive Tracking in Endovascular Interventional Procedures
,”
International Society for Magnetic Resonance in Medicine 14th Scientific Meeting & Exhibition
, Seattle, WA, May 6–12, Paper No. 3354.
You do not currently have access to this content.