Silicone-based tissue-mimicking phantom is widely used as a surrogate of tissue for clinical simulators, allowing clinicians to practice medical procedures and researchers to study the performance of medical devices. This study investigates using the mineral oil in room-temperature vulcanizing silicone to create the desired mechanical properties and needle insertion characteristics of a tissue-mimicking phantom. Silicone samples mixed with 0, 20, 30, and 40 wt. % mineral oil were fabricated for indentation and needle insertion tests and compared to four types of porcine tissues (liver, muscle with the fiber perpendicular or parallel to the needle, and fat). The results demonstrated that the elastic modulus and needle insertion force of the phantom both decrease with an increasing concentration of mineral oil. Use of the mineral oil in silicone could effectively tailor the elastic modulus and needle insertion force to mimic the soft tissue. The silicone mixed with 40 wt. % mineral oil was found to be the best tissue-mimicking phantom and can be utilized for needle-based medical procedures.

References

References
1.
Coles
,
T. R.
,
Meglan
,
D.
, and
John
,
N. W.
,
2011
, “
The Role of Haptics in Medical Training Simulators: A Survey of the State of the Art
,”
IEEE Trans. Haptics
,
4
(
1
), pp.
51
66
.10.1109/TOH.2010.19
2.
Liu
,
A.
,
Tendick
,
F.
,
Cleary
,
K.
, and
Kaufmann
,
C.
,
2003
, “
A Survey of Surgical Simulation: Applications, Technology, and Education
,”
Presence: Teleop. Virtual Environ.
,
12
(
6
), pp.
599
614
.10.1162/105474603322955905
3.
Zell
,
K.
,
Sperl
,
J. I.
,
Vogel
,
M. W.
,
Niessner
,
R.
, and
Haisch
,
C.
,
2007
, “
Acoustical Properties of Selected Tissue Phantom Materials for Ultrasound Imaging
,”
Phys. Med. Biol.
,
52
(
20
), pp.
475
484
.10.1088/0031-9155/52/20/N02
4.
Spirou
,
G. M.
,
Oraevsky
,
A. A.
,
Vitkin
,
I. A.
, and
Whelan
,
W. M.
,
2005
, “
Optical and Acoustic Properties at 1064 nm of Polyvinyl Chloride-Plastisol for Use as a Tissue Phantom in Biomedical Optoacoustics
,”
Phys. Med. Biol.
,
50
(
14
), pp.
141
153
.10.1088/0031-9155/50/14/N01
5.
Madsen
,
E. L.
,
Frank
,
G. R.
,
Krouskop
,
T. A.
,
Varghese
,
T.
,
Kallel
,
F.
, and
Ophir
,
J.
,
2003
, “
Tissue-Mimicking Oil-in-Gelatin Dispersions for Use in Heterogeneous Elastography Phantoms
,”
Ultrason. Imaging
,
25
(
1
), pp.
17
38
.10.1177/016173460302500102
6.
Hall
,
T. J.
,
Bilgen
,
M.
,
Insana
,
M. F.
, and
Krouskop
,
T. A.
,
1997
, “
Phantom Materials for Elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
44
(
6
), pp.
1355
1365
.10.1109/58.656639
7.
Giavasis
,
I.
,
Harvey
,
L. M.
, and
McNeil
,
B.
,
2000
, “
Gellan Gum
,”
Crit. Rev. Biotechnol.
,
20
, pp.
177
211
.10.1080/07388550008984169
8.
Chen
,
R. K.
and
Shih
,
A. J.
,
2013
, “
Multi-Modality Gellan Gum-Based Tissue Mimicking Phantom With Targeted Mechanical, Electrical, and Thermal Properties
,”
Phys. Med. Biol.
,
58
, pp.
5511
5525
.10.1088/0031-9155/58/16/5511
9.
Hungr
,
N.
,
Long
,
J.-A.
,
Beix
,
V.
, and
Troccaz
,
J.
,
2012
, “
A Realistic Deformation Prostate Phantom for Multimodal Imaging and Needle-Insertion Procedures
,”
Med. Phys.
,
39
(
4
), pp.
2031
2041
.10.1118/1.3692179
10.
Pogue
,
B. W.,
and
Patterson
,
M. S.
,
2006
, “
Review of Tissue Simulating Phantoms for Optical Spectroscopy, Imaging and Dosimetry
,”
J. Biomed. Opt.
,
11
(
4
), p.
041102
.10.1117/1.2335429
11.
Gao
,
Z.
,
Lister
,
K.
, and
Desai
,
J. P.
,
2010
, “
Constitution Modeling of Liver Tissue: Experiment and Theory
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
505
516
.10.1007/s10439-009-9812-0
12.
Lu
,
M. H.
,
Yu
,
W. N.
,
Huang
,
Q. H.
,
Huang
,
Y. P.
, and
Zheng
,
Y. P.
,
2009
, “
A Hand-Held Indentation System for the Assessment of Mechanical Properties of Soft Tissues In Vivo
,”
IEEE Trans. Instrum. Meas.
,
58
(
9
), pp.
3079
3085
.10.1109/TIM.2009.2016876
13.
Madsen
,
E. L.
,
Frank
,
G. R.
,
Krouskop
,
T. A.
,
Varghese
,
T.
,
Kallel
,
F.
, and
Ophir
,
J.
,
2003
, “
Tissue-Mimicking Oil-in-Gelatin Dispersions for Use in Heterogeneous Elastrography Phantoms
,”
Ultrason. Imaging
,
25
, pp.
17
38
.10.1177/016173460302500102
14.
Abolhassani
,
N.
,
Patel
,
R.
, and
Moallem
,
M.
,
2007
, “
Needle Insertion Into Soft Tissue: A Survey
,”
Med. Eng. Phys.
,
29
(
4
), pp.
413
431
.10.1016/j.medengphy.2006.07.003
15.
van Gerwen
,
D. J.
,
Dankelman
,
J.
, and
van den Dobbelsteen
,
J. J.
,
2012
, “
Needle-Tissue Interaction Forces—A Survey of Experimental Data
,”
Med. Eng. Phys.
,
34
, pp.
665
680
.10.1016/j.medengphy.2012.04.007
16.
Okamura
,
A. M.
,
2004
, “
Force Modeling for Needle Insertion Into Soft Tissue
,”
IEEE Trans. Biomed. Eng.
,
51
, pp.
1708
1713
.10.1109/TBME.2004.831542
17.
Moore
,
J. Z.
,
Malukhin
,
K.
,
Shih
,
A. J.
, and
Ehmann
,
K. F.
,
2011
, “
Hollow Needle Tissue Insertion Force Model
,”
CIRP Ann.
,
60
, pp.
157
160
.10.1016/j.cirp.2011.03.101
18.
Moore
,
J. Z.
,
McLaughlin
,
P. W.
, and
Shih
,
A. J.
,
2012
, “
Novel Needle Cutting Edge Geometry for End-Cut Biopsy
,”
Med. Phys.
,
39
, pp.
99
108
.10.1118/1.3665253
19.
Wang
,
Y. C.
,
Tai
,
B. L.
,
Chen
,
R. K.
, and
Shih
,
A. J.
,
2013
, “
The Needle With Lancet Point—Geometry for Needle Tip Grinding and Tissue Insertion Force
,”
ASME J. Manuf. Sci. Eng.
,
135
(4), p.
041010
.10.1115/1.4023718
20.
Wang
,
Y. C.
,
Chen
,
R. K.
,
Tai
,
B. L.
, and
Shih
,
A. J.
,
2013
, “
Optimal Needle Design for Minimal Insertion Force and Bevel Length
,”
Med. Eng. Phys.
(submitted).
21.
Finocchio, D., J., 2005, “Material Safety Data Sheet Dragon Skin and Dragon Skin Q,” Smooth-On Inc., Easton PA, http://apps.risd.edu/envirohealth_msds/dragonskin.pdf
22.
Tadesse
,
Y.
,
Moore
,
D.
,
Thayer
,
N.
, and
Priya
,
S.
,
2009
, “
Silicone Based Artificial Skin for Humanoid Facial Expressions
,”
Proc. SPIE
,
7287
, p.
728709
.10.1117/12.815684
23.
Egorov
,
V.
,
Tsyuryupa
,
S.
,
Kanilo
,
S.
,
Kogit
,
M.
, and
Sarvazyan
,
A.
,
2008
, “
Soft Tissue Elastometer
,”
Med. Eng. Phys.
,
30
, pp.
206
212
.10.1016/j.medengphy.2007.02.007
24.
Hideaki
,
I.,
and
Yuuki
,
Y.
,
2006
, “
Measurement of Silicone Rubber Using Impedance Change of a Quartz-Crystal Tuning-Fork Tactile Sensor
,”
Jpn. J. Appl. Phys.
,
45
, pp.
4643
4646
.10.1143/JJAP.45.4643
25.
Chen
,
E. J.
,
Novakofski
,
J.
,
Jenkins
,
W. K.
, and
O'Brien
,
W. D.
,
1996
, “
Young's Modulus Measurement of Soft Tissues With Application to Elasticity Imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
43
, pp.
191
194
.10.1109/58.484478
26.
ASTM Standard D2240-05
,
2003
, “
Standard Test Method for Rubber Property-Durometer Hardness
,”
ASTM International
,
West Conshohocken, PA
.
27.
Kobayashi
,
Y.
,
Sato
,
T.
, and Fujie, M. G.,
2009
, “
Modeling of Friction Force Based on Relative Velocity Between Liver Tissue and Needle for Needle Insertion Simulation
,”
Annual International Conference of the IEEE, Engineering in Medicine and Biology Society
(
EMBC 2009
),
Minneapolis, MN
, September 3–6, pp. 5274-5278.10.1109/IEMBS.2009.5334078
28.
Kataoka
,
H.
,
Washio
,
T.
,
Chinzei
,
K.
,
Mizuhara
,
K.
,
Simone
,
C.
, and
Okamura
,
A. M.
,
2002
, “
Measurement of the Tip and Friction Force Acting on a Needle During Penetration
,”
Proceedings of the 5th Interational Medical Image Computing and Computer-Assisted Intervention Conference
(
MICCAI 2002
), Tokyo, September 25–28, pp.
216
223
.10.1007/3-540-45786-0_27
You do not currently have access to this content.