Current minimally invasive laparoscopic tissue–harvesting techniques for pathological purposes involve taking multiple imprecise and inaccurate biopsies, usually using a laparoscopic forceps or other assistive devices. Potential hazards, e.g., cancer spread when dealing with tumorous tissue, call for a more reliable alternative in the form of a single laparoscopic instrument capable of repeatedly taking a precise biopsy at a desired location. Therefore, the aim of this project was to design a disposable laparoscopic instrument tip, incorporating a centrally positioned glass fiber for tissue diagnostics; a cutting device for fast, accurate, and reliable biopsy of a precisely defined volume; and a container suitable for sample storage. Inspired by the sea urchin's chewing organ, Aristotle's lantern, and its capability of rapid and simultaneous tissue incision and enclosure by axial translation, we designed a crown-shaped collapsible cutter operating on a similar basis. Based on a series of in vitro experiments indicating that tissue deformation decreases with increasing penetration speed leading to a more precise biopsy, we decided on the cutter's forward propulsion via a spring. Apart from the embedded spring-loaded cutter, the biopsy harvester comprises a smart mechanism for cutter preloading, locking, and actuation, as well as a sample container. A real-sized biopsy harvester prototype was developed and tested in a universal tensile testing machine at TU Delft. In terms of mechanical functionality, the preloading, locking, and actuation mechanism as well as the cutter's rapid incising and collapsing capabilities proved to work successfully in vitro. Further division of the tip into a permanent and a disposable segment will enable taking of multiple biopsies, mutually separated in individual containers. We believe the envisioned laparoscopic optomechanical biopsy device will be a solution ameliorating time-demanding, inaccurate, and potentially unsafe laparoscopic biopsy procedures.

References

1.
Braga
,
M.
,
Vignali
,
A.
,
Gianotti
,
L.
,
Zuliani
,
W.
,
Radaelli
,
G.
,
Gruarin
,
P.
,
Dellabona
,
P.
, and
Carlo
,
V. D.
,
2002
, “
Laparoscopic Versus Open Colorectal Surgery: A Randomized Trial on Short-Term Outcome
,”
Ann. Surg.
,
236
(
6
), pp.
759
767
.10.1097/00000658-200212000-00008
2.
Breedveld
,
P.
,
Stassen
,
H. G.
,
Meijer
,
D. W.
, and
Jakimowicz
,
J. J.
,
1999
, “
Manipulation in Laparoscopic Surgery: Overview of Impeding Effects and Supporting Aids
,”
J. Laparoendosc. Adv. Surg. Tech. A
,
9
(
6
), pp.
469
480
.10.1089/lap.1999.9.469
3.
Khoorjestan
,
S. M.
,
Najarian
,
S.
,
Simforoosh
,
N.
, and
Farkoush
,
S. H.
,
2010
, “
Design and Modeling of a Novel Flexible Surgical Instrument Applicable in Minimally Invasive Surgery
,”
Int. J. Nat. Eng. Sci.
,
4
(
1
), pp.
53
60
.
4.
Minor
,
M.
, and
Mukherjee
,
R.
,
1999
, “
A Mechanism for Dexterous End-Effector Placement During Minimally Invasive Surgery
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
472
479
.10.1115/1.2829485
5.
Velanovich
,
V.
,
2000
, “
Laparoscopic vs Open Surgery
,”
Surg. Endosc.
,
14
(
1
), pp.
16
21
.10.1007/s004649900003
6.
Breedveld
,
P.
,
2010
, “
Steerable Laparoscopic Cable-Ring Forceps
,”
ASME J. Med. Dev.
,
4(2)
,
p
. 027518.10.1115/1.3443169
7.
Mayhew
,
P.
,
2009
, “
Surgical Views: Techniques for Laparoscopic and Laparoscopic Assisted Biopsy of Abdominal Organs
,”
Compend. Contin. Educ. Vet.
,
31
(
4
), pp.
170
176
.
8.
Mayo Clinic Medical Information and Tools for Healthy Living
,” Mayo Clinic, http://www.mayoclinic.org/healthy-lifestyle
9.
Cerwenka
,
H.
,
Hoff
,
M.
,
Rosanelli
,
G.
,
Hauser
,
H.
,
Thalhammer
,
M.
,
Smola
,
M. G.
, and
Klimpfinger
,
M.
,
1997
, “
Experience With a High Speed Biopsy Gun in Breast Cancer Diagnosis
,”
Eur. J. Surg. Oncol.
,
23
(
3
), pp.
206
207
.10.1016/S0748-7983(97)92268-X
10.
Layfield
,
L. J.
,
1995
, “
Fine Needle Aspiration of the Breast: Review of the Technique and a Comparison With Excisional Biopsy
,”
Curr. Diagn. Pathol.
,
2
(
3
), pp.
138
145
.10.1016/S0968-6053(05)80052-3
11.
Heijnsdijk
,
E. A. M.
,
Visser
,
H.
,
Dankelman
,
J.
, and
Gouma
,
D. J.
,
2004
, “
Slip and Damage Properties of Jaws of Laparoscopic Graspers
,”
Surg. Endosc. Other Intervent. Tech.
,
18
(
6
), pp.
974
979
.10.1007/s00464-003-9153-2
12.
Provenzale
,
D.
, and
Onken
,
J.
,
2001
, “
Surveillance Issues in Inflammatory Bowel Disease: Ulcerative Colitis
,”
J. Clin. Gastroenterol.
,
32
(
2
), pp.
99
105
.10.1097/00004836-200102000-00003
13.
Wallace
,
J. E.
,
Sayler
,
C.
,
McDowell
,
N. G.
, and
Stephens Moseley
,
H.
,
1996
, “
The Role of Stereotactic Biopsy in Assessment of Nonpalpable Breast Lesions
,”
Am. J. Surg.
,
171
(
5
), pp.
471
473
.10.1016/S0002-9610(96)00006-2
14.
Wang
,
T. D.
, and
Van Dam
,
J.
,
2004
, “
Optical Biopsy: A New Frontier in Endoscopic Detection and Diagnosis
,”
Clin. Gastroenterol. Hepatol.
,
2
(
9
), pp.
744
753
.10.1016/S1542-3565(04)00345-3
15.
Volpe
,
A.
,
Kachura
,
J. R.
,
Geddie
,
W. R.
,
Evans
,
A. J.
,
Gharajeh
,
A.
,
Saravanan
,
A.
, and
Jewett
,
M. A. S.
,
2007
, “
Techniques, Safety and Accuracy of Sampling of Renal Tumors by Fine Needle Aspiration and Core Biopsy
,”
J. Urol.
,
178
(
2
), pp.
379
386
.10.1016/j.juro.2007.03.131
16.
Amelink
,
A.
,
Kok
,
D. J.
,
Sterenborg
,
H. J. C. M.
, and
Scheepe
,
J. R.
,
2011
, “
In Vivo Measurement of Bladder Wall Oxygen Saturation Using Optical Spectroscopy
,”
J. Biophoton.
,
4
(
10
), pp.
715
720
.10.1002/jbio.201100043
17.
Sharon
,
A.
,
Singh
,
S.
,
Bigio
,
I.
,
Atladottir
,
S.
,
Foss
,
D.
, and
Vogtel
,
P.
,
2009
, “Low Cost Disposable Medical Forceps to Enable a Hollow Central Channel for Various Functionalities,” WO Patent No. 2009/111717.
18.
Whitehead
,
P. D.
,
MacAulay
,
C. E.
,
MacKinnon
,
N. B.
, and
Zeng
,
H.
,
1998
, “Catheters and Endoscopes Comprising Optical Probes and Bioptomes and Methods of Using the Same,” WO Patent No. 98/40015.
19.
Lacombe
,
F.
,
Hughett
,
D.
,
Tihansky
,
C.
, and
Genet
,
M.
,
2010
, “Multi-Purpose Biopsy Forceps,” U.S. Patent No. 0,168,610.
20.
Komachiya
,
M.
,
Fumino
,
T.
,
Sakaguchi
,
T.
, and
Watanabe
,
S.
,
1999
, “
Design of a Sensing Glass Fiber With Specific Refractive-Index Composition for a System With 1.3 μm Wavelength Light Source
,”
Sens. Actuators A
,
78
(
2–3
), pp.
172
179
.10.1016/S0924-4247(99)00230-7
21.
“Laparoscopic Instruments—Product Catalog,” 2010, Aesculap, http://www.aesculapusa.com/assets/base/doc/DOC465_REV_F_Laparoscopic_Catalog.pdf
22.
Candia Carnevali
,
M. D.
,
Wilkie
,
I. C.
,
Lucca
,
E.
,
Andrietti
,
F.
, and
Melone
,
G.
,
1993
, “
The Aristotle's Lantern of the Sea-Urchin Stylocidaris affinis (Echinoida, Cidaridae): Functional Morphology of the Musculo-Skeletal System
,”
Zoomorphology
,
113
(
3
), pp.
173
189
.10.1007/BF00394858
23.
Dolmatov
,
I.
,
Mashanov
,
V.
, and
Zueva
,
O.
,
2007
, “
Derivation of Muscles of the Aristotle's Lantern From Coelomic Epithelia
,”
Cell Tissue Res.
,
327
(
2
), pp.
371
384
.10.1007/s00441-006-0314-1
24.
Scarpa
,
G.
,
1985
,
Modelli di Bionica. Capire la Natura Sttraverso i Modelli
,
V.
Rossi
, ed.,
Nicola Zanichelli Editore
,
Bologna
, Italy, pp.
13
74
.
25.
Giorgio Scarpa—Bionic Models and Rotational Geometry Models
,” 2009, San Francisco State University, San Francisco, CA, http://online.sfsu.edu/trogu/scarpa/movies/scarpa_bionics.mov
26.
Sturesson
,
C.
, and
Andersson-Engels
,
S.
,
1995
, “
A Mathematical Model for Predicting the Temperature Distribution in Laser-Induced Hyperthermia. Experimental Evaluation and Applications
,”
Phys. Med. Biol.
,
40
(
12
), p.
2037
.10.1088/0031-9155/40/12/003
You do not currently have access to this content.