Embedding a thermoelectric generator (TEG) in a biological body is a promising way to supply electronic power in the long term for an implantable medical device (IMD). It can resolve the service life mismatch between the IMD and its battery. This paper is dedicated to developing a real prototype, which consists of an implanted TEG and a specified boosted circuit. Two implanted TEG modules were constructed and a boosted circuit with a highly integrated DC/DC converter was fabricated to stabilizing the energy output and improving the voltage output for the implanted TEG. According to the experiments, such a device combination was already capable of supporting a clock circuit in the in vivo rabbit whose power consumption is much higher than an ordinary cardiac pacemaker. Meanwhile, a close to reality theoretical model was established for characterizing the implanted TEG. This study is expected to serve as a valuable reference for future designs of the implanted TEG and its boosted circuit.

References

References
1.
Wang
,
F. Z.
,
Hua
,
W.
,
Zhang
,
S.
,
Hum
,
D. Y.
, and
Chen
,
X.
,
2003
, “
Clinical Survey of Pacemakers
,”
China J. Card. Arrhyth.
,
7
(
3
), pp.
2000
2001
.10.3760/cma.j.issn.1007-6638.2003.03.022
2.
Zeng
,
F. G.
,
Yu
,
J.
, and
Bai
,
H.
,
2004
, “
Trends in Cochlear Implant
,”
Trends Amplif.
,
8
, pp.
1
34
.10.1177/108471380400800102
3.
Wei
,
X. J.
, and
Liu
,
J.
,
2008
, “
Power Sources and Electrical Recharging Strategies for Implantable Medical Devices
,”
Front. Energy Power Eng. China
,
2
(
1
), pp.
1
13
.10.1007/s11708-008-0016-3
4.
Holmes
,
C. F.
,
2001
, “
The Role of Lithium Batteries in Modern Health Care
,”
J. Power Source
,
97–98
, pp.
739
741
.10.1016/S0378-7753(01)00601-2
5.
Frank
,
D.
, and
Higson
,
P. J. S.
,
2007
, “
Biofuel Cells—Recent Advances and Applications
,”
Biosens. Bioelectron.
,
22
, pp.
1224
1235
.10.1016/j.bios.2006.04.029
6.
Snyder
,
G. J.
,
2009
,
Energy Harvesting Technologies: Thermoelectric Energy Harvesting
,
Springer Science and Business Media
,
Dordrecht, The Netherlands
.
7.
Huesgen
,
T.
,
Woias
,
P.
, and
Kockmann
,
N.
,
2008
, “
Design and Fabrication of MEMS Thermoelectric Generators With High Temperature Efficiency
,”
Sens. Actuators, A
,
423
, pp.
145
146
.10.1016/j.sna.2007.11.032
8.
Torfs
,
T.
,
Leonov
,
V.
, and
Vullers
,
R. J. M.
,
2007
, “
Pulse Oximeter Fully Powered by Human Body Heat
,”
Sens. Transducers J.
,
80
(6), pp.
1230
1238
.
9.
Yada
,
A.
,
Pipe
,
K. P.
, and
Shtein
,
M.
,
2008
, “
Fiber-Based Flexible Thermoelectric Power Generator
,”
J. Power Sources
,
175
, pp.
909
913
.10.1016/j.jpowsour.2007.09.096
10.
Yang
,
Y.
,
Wei
,
X. J.
, and
Liu
,
J.
,
2007
, “
Suitability of a Thermoelectric Power Generator for Implantable Medical Electronic Devices
,”
J. Phys. D: Appl. Phys.
,
40
, pp.
5790
5800
.10.1088/0022-3727/40/18/042
11.
Wei
,
X. J.
,
Yang
,
Y.
, and
Liu
,
J.
,
2007
, “
Animal Experiments on Implanted Thermal Electricity Generator
,”
Beijing Biomed. Eng.
,
27
, pp.
276
280
(in Chinese).
12.
Schmidt
,
C. L.
, and
Skarstad
,
P. M.
,
2001
, “
The Future of Lithium and Lithium—Ion Battery in Implantable Medical Devices
,”
J. Power Sources
,
97–98
, pp.
742
746
.10.1016/S0378-7753(01)00648-6
13.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Phys.
,
1
, pp.
93
122
.
14.
Rowe
,
D. M.
,
1995
,
CRC Handbook of Thermoelectrics
,
CRC Press
,
Boca Raton, FL
.
15.
Fang
,
Z. J.
,
2003
, “
Thick Film Growth of the Diamond-Film/Alumina Composite and Its Application in Microelectronics
,” Ph.D. thesis, Shanghai University, Shanghai, China.
16.
Xiao
,
J.
,
He
,
Z. Z.
,
Yang
,
Y.
,
Chen
,
B. W.
,
Deng
,
Z. S.
, and
Liu
,
J.
,
2011
, “
Investigation on Three-Dimensional Temperature Field of Human Knee Considering Anatomical Structure
,”
Int. J. Heat Mass Transfer
,
54
, pp.
1851
1860
.10.1016/j.ijheatmasstransfer.2010.11.057
You do not currently have access to this content.