The application of stem surface treatments and finishes are common methods for improving stem-cement interface stability in joint replacement systems; however, success of these surfaces has been variable. As opposed to applying a treatment or finish, altering stem design through changing the surface topography of the base stem material may offer some advantages. This study compared the effect of stem circumferential grooving on the torsional and axial stability of cemented stems. Fifteen metal stems were machined from cobalt chrome to have smooth (n = 5) or circumferential-grooved surfaces, where groove depth and spacing was either 0.6 mm (n = 5) or 1.1 mm (n = 5). Stems were potted in aluminum tubes using bone cement, left 24 h to cure, and placed in a materials testing machine for testing using a cyclic staircase loading protocol at 1.5 Hz. All stems were tested independently in compression and torsion on separate testing days, using the same stems repotted with new cement. Motion of the stem was tracked, and failure was defined either as rapid increase in stem motion, or completion of the loading protocol. Statistical analysis was used to compare interface strength and stem motion prior to failure. Grooved stems demonstrated increased interface strength (p < 0.001) and reduced motion (p < 0.01) compared to smooth stems under compression. In torsion, no significant difference was found in strength among the grooved and smooth stems (p = 0.10); however, grooved 1.1 mm demonstrated greatest interface motion prior to catastrophic failure (p < 0.01). Overall, circumferential-grooved stems offered improved stability under compression, and comparable stability in torsion, relative to the smooth stems.

References

References
1.
New Zealand Orthopaedic Association
,
2010
, “
Eleven Year Report—January 1999 to December 2009
,” www.cdhb.govt.nz/njr/reports/A2D65CA3.pdf
2.
Australian Orthopaedic Association
,
2010
, “
National Joint Registry, Hip and Knee Arthroplasty Annual Report 2010
,” https://aoanjrr.dmac.adelaide.edu.au/annual-reports-2010
3.
Mohler
,
C.G.
,
Callaghan
,
J.J.
,
Collis
,
D.K.
, and
Johnston
,
R.C.
,
1995
, “
Early Loosening of the Femoral Component at the Cement-Prosthesis Interface After Total Hip Replacement
,”
J. Bone Joint Surg., Am. Vol.
,
77
(
9
), pp.
1315
1322
.
4.
Kim
,
J.M.
,
Mudgal
,
C.S.
,
Konopka
,
J.F.
, and
Jupiter
,
J. B.
,
2011
, “
Complications of Total Elbow Arthroplasty
,”
J. Am. Acad. Orthop. Surg.
,
19
(
6
), pp.
328
339
.
5.
Amis
,
A. A.
,
Dowson
,
D.
, and
Wright
,
V.
,
1980
, “
Elbow Joint Force Predictions for Some Strenuous Isometric Actions
,”
J. Biomech.
,
13
(
9
), pp.
765
775
.10.1016/0021-9290(80)90238-9
6.
Johnson
,
J. A.
, and
King
,
G. J. W.
,
2005
,
Shoulder and Elbow Arthroplasty
,
Lippincott
,
New York
, pp.
279
296
.
7.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.10.1016/S0021-9290(01)00040-9
8.
Bergmann
,
G.
,
Graichen
,
F.
,
Bender
,
A.
,
Kaab
,
M.
,
Rohlmann
,
A.
, and
Westerhoff
,
P.
,
2007
, “
In Vivo Glenohumeral Contact Forces—Measurements in the First Patient 7 Months Postoperatively
,”
J. Biomech.
,
40
(
10
), pp.
2139
2149
.10.1016/j.jbiomech.2006.10.037
9.
Barrack
,
R. L.
,
2000
, “
Early Failure of Modern Cemented Stems
,”
J. Arthroplasty
,
15
(
8
), pp.
1036
1050
.10.1054/arth.2000.16498
10.
Evans
,
B. G.
,
Daniels
,
A. U.
,
Serbousek
,
J. C.
, and
Mann
,
R. J.
,
1988
, “
A Comparison of the Mechanical Designs of Articulating Total Elbow Prostheses
,”
Clin. Mater.
,
3
(
3
), pp.
235
248
.10.1016/0267-6605(88)90060-1
11.
Jeon
,
I. H.
,
Morrey
,
B. F.
, and
Sanchez-Sotelo
,
J.
,
2012
, “
Ulnar Component Surface Finish Influenced the Outcome of Primary Coonrad-Morrey Total Elbow Arthroplasty
,”
J. Shoulder Elbow Surg.
,
21
(
9
), pp.
1229
1235
.10.1016/j.jse.2011.08.062
12.
van der Lugt
,
J. C.
, and
Rozing
,
P. M.
,
2004
, “
Systematic Review of Primary Total Elbow Prostheses Used for the Rheumatoid Elbow
,”
Clin. Rheumatol.
,
23
(
4
), pp.
291
298
.10.1007/s10067-004-0884-9
13.
Crowninshield
,
R. D.
,
Jennings
,
J. D.
,
Laurent
,
M. L.
, and
Maloney
,
W. J.
,
1998
, “
Cemented Femoral Component Surface Finish Mechanics.
,”
Clin. Orthop. Relat. Res.
,
355
, pp.
90
102
.10.1097/00003086-199810000-00010
14.
Scheerlinck
,
T.
, and
Casteleyn
,
P. P.
,
2006
, “
The Design Features of Cemented Femoral Hip Implants
,”
J. Bone Joint Surg. Br.
,
88
(
11
), pp.
1409
1418
.
15.
Hosein
,
Y. K.
,
King
,
G. J. W.
, and
Dunning
,
C. E.
,
2013
, “
The Effect of Stem Surface Treatment and Material on Pistoning of Ulnar Components in Linked Cemented Elbow Prostheses
,”
J. Shoulder Elbow Surg.
,
22
(
9
), pp.
1248
1255
.10.1016/j.jse.2013.03.007
16.
Athwal
,
G. S.
, and
Morrey
,
B. F.
,
2006
, “
Revision Total Elbow Arthroplasty for Prosthetic Fractures
,”
J. Bone Jt. Surg., Am.
Vol.,
88
(
9
), pp.
2017
2026
.10.2106/JBJS.E.00878
17.
Cheung
,
E. V.
, and
O'Driscoll
,
S. W.
,
2007
, “
Total Elbow Prosthesis Loosening Caused by Ulnar Component Pistoning
,”
J. Bone Jt. Surg., Am.
Vol.,
89
(
6
), pp.
1269
1274
.10.2106/JBJS.F.00376
18.
Verdonschot
,
N.
,
2005
, “
Philosophies of Stem Designs in Cemented Total Hip Replacement
,”
Orthopedics
,
28
(
8
), pp.
s833
s840
.
19.
Lewis
,
G.
,
2011
, “
Viscoelastic Properties of Injectable Bone Cements for Orthopaedic Applications: State-of-the-Art Review
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
,
98
(
1
), pp.
171
191
.10.1002/jbm.b.31835
20.
Kedgley
,
A. E.
,
Takaki
,
S. E.
,
Lang
,
P.
, and
Dunning
,
C. E.
,
2007
, “
The Effect of Cross-Sectional Stem Shape on the Torsional Stability of Cemented Implant Components
,”
J. Biomech. Eng.
,
129
(
3
), pp.
310
314
.10.1115/1.2720907
21.
Callaghan
,
J. J.
,
Fulghum
,
C. S.
,
Glisson
,
R. R.
, and
Stranne
,
S. K.
,
1992
, “
The Effect of Femoral Stem Geometry on Interface Motion in Uncemented Porous-Coated Total Hip Prostheses. Comparison of Straight-Stem and Curved-Stem Designs
,”
J. Bone Jt. Surg., Am.
Vol.,
74
(
6
), pp.
839
848
.
22.
Faber
,
K. J.
,
Cordy
,
M. E.
,
Milne
,
A. D.
,
Chess
,
D. G.
,
King
,
G. J.
, and
Johnson
,
J. A.
,
1997
, “
Advanced Cement Technique Improves Fixation in Elbow Arthroplasty
,”
Clin. Ortho. Relat. Res.
,
334
, pp.
150
156
.10.1097/00003086-199701000-00020
23.
Iesaka
,
K.
,
Jaffe
,
W. L.
, and
Kummer
,
F. J.
,
2003
, “
Effects of Preheating of Hip Prostheses on the Stem-Cement Interface
,”
J. Bone Jt. Surg., Am.
Vol.,
85
(
3
), pp.
421
427
.
24.
Kwong
,
F. N. K.
, and
Power
,
R. A.
,
2006
, “
A Comparison of the Shrinkage of Commercial Bone Cements When Mixed Under Vacuum.
,”
J. Bone Jt. Surg. Br.
,
88
(
1
), pp.
120
122
.
25.
Lewis
,
G.
,
1997
, “
Properties of Acrylic Bone Cement: State of the Art Review
,”
J. Biomed. Mater. Res.
,
38
(
2
), pp.
155
182
.10.1002/(SICI)1097-4636(199722)38:2<155::AID-JBM10>3.0.CO;2-C
26.
Orr
,
J. F.
,
Dunne
,
N. J.
, and
Quinn
,
J. C.
,
2003
, “
Shrinkage Stresses in Bone Cement
,”
Biomaterials
,
24
(
17
), pp.
2933
2940
.10.1016/S0142-9612(03)00055-3
27.
Eveleigh
,
R.
,
2001
, “
Mixing Systems and the Effects of Vacuum Mixing on Bone Cement
,”
British J. Perioper. Nursing
,
11
(
3
), pp.
132
140
.
28.
Lennon
,
A. B.
, and
Prendergast
,
P. J.
,
2002
, “
Residual Stress Due to Curing Can Initiate Damage in Porous Bone Cement: Experimental and Theoretical Evidence
,”
J. Biomech.
,
35
(
3
), pp.
311
321
.10.1016/S0021-9290(01)00216-0
29.
Bishop
,
N. E.
,
Ferguson
,
S.
, and
Tepic
,
S.
,
1996
, “
Porosity Reduction in Bone Cement at the Cement-Stem Interface
,”
J. Bone Jt. Surg. Br.
,
78
(
3
), pp.
349
356
.
30.
Draenert
,
K.
, and
Draenert
,
Y.
,
2005
,
The Well-Cemented Total Hip Arthroplasty
,
Springer
,
New York
, pp.
93
102
.
31.
Crowninshield
,
R. D.
,
Brand
,
R. A.
,
Johnston
,
R. C.
, and
Milroy
,
J. C.
,
1980
, “
An Analysis of Femoral Component Stem Design in Total Hip Arthroplasty
,”
J. Bone Joint Surg., Am.
Vol.,
62
(
1
), pp.
68
78
.
You do not currently have access to this content.