Atherosclerosis is a disease that causes obstructions to develop within the arterial system; these obstructions can result in an acute vascular event such as a heart attack or stroke, and potentially death. In the majority of cases a standard angioplasty balloon is sufficient to dilate the site of an obstruction; however difficult obstructions, such as heavily calcified lesions require specialist dilation solutions. One such example of a device is Boston Scientific's cutting balloon. An analysis of the Food and Drug Administration's (FDA) Manufacturer and User Facility Device Experience (MAUDE) database demonstrates that the original cutting balloon has a number of distinct adverse events associated with it. In this study we describe the design, manufacturing, and testing of a new force focused angioplasty balloon that has the potential to reduce or eliminate the adverse events associated with the Boston Scientific cutting balloon. This design incorporates two elastomeric materials to aid recoiling of the device namely: nitinol and a silicone elastomer. New methods of manufacturing are described in this study, that ensure that precision molding and assembly can occur. To determine the effectiveness of our device, we simulated concentric calcified lesions with a surrogate chalk model. These results demonstrate that our device has a significantly lower lesion burst pressure in comparison to a standard angioplasty balloon, 174 atm versus 12.48 atm. To determine if our device reduced potential snagging, and thus reduced the risk of withdrawal resistance being encountered, we performed a withdrawal resistance test. A noticeably lower withdrawal force is associated with our device, the high peaks on the Boston Scientific device indicate that there may be wings forming on the balloon and these are catching on the tip of the introducer sheath. Finally, we demonstrated in vivo efficacy of our device in a porcine model. By the use of elastomeric recoiling features in a new cutting balloon design we have been able to overcome the three main reported adverse events associated with the Boston Scientific cutting balloon. Subsequently we experimentally demonstrated this improved efficacy for one particular peripheral balloon size (e.g., 5 mm diameter).

References

References
1.
Naghavi
,
M.
,
Libby
,
P.
,
Falk
,
E.
,
Casscells
,
S. W.
,
Litovsky
,
S.
,
Rumberger
,
J.
,
Badimon
,
J. J.
,
Stefanadis
,
C.
,
Moreno
,
P.
,
Pasterkamp
,
G.
,
Fayad
,
Z.
,
Stone
,
P. H.
,
Waxman
,
S.
,
Raggi
,
P.
,
Madjid
,
M.
,
Zarrabi
,
A.
,
Burke
,
A.
,
Yuan
,
C.
,
Fitzgerald
,
P. J.
,
Siscovick
,
D. S.
,
De Korte
,
C. L.
,
Aikawa
,
M.
,
Juhani Airaksinen
,
K. E.
,
Assmann
,
G.
,
Becker
,
C. R.
,
Chesebro
,
J. H.
,
Farb
,
A.
,
Galis
,
Z. S.
,
Jackson
,
C.
,
Jang
,
I. K.
,
Koenig
,
W.
,
Lodder
,
R. A.
,
March
,
K.
,
Demirovic
,
J.
,
Navab
,
M.
,
Priori
,
S. G.
,
Rekhter
,
M. D.
,
Bahr
,
R.
,
Grundy
,
S. M.
,
Mehran
,
R.
,
Colombo
,
A.
,
Boerwinkle
,
E.
,
Ballantyne
,
C.
,
Insull
,
W.
Jr.
,
Schwartz
,
R. S.
,
Vogel
,
R.
,
Serruys
,
P. W.
,
Hansson
,
G. K.
,
Faxon
,
D. P.
,
Kaul
,
S.
,
Drexler
,
H.
,
Greenland
,
P.
,
Muller
,
J. E.
,
Virmani
,
R.
,
Ridker
,
P. M.
,
Zipes
,
D. P.
,
Shah
,
P. K.
, and
Willerson
,
J. T.
,
2003
, “
From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: Part I
,”
Circulation
,
108
(
14
), pp.
1664
1672
.10.1161/01.CIR.0000087480.94275.97
2.
Barath
,
P.
,
Fishbein
,
M. C.
,
Vari
,
S.
, and
Forrester
,
J. S.
,
1991
, “
Cutting Balloon: A Novel Approach to Percutaneous Angioplasty
,”
Am. J. Cardiol.
,
68
(
11
), pp.
1249
1252
.10.1016/0002-9149(91)90207-2
3.
Acampora
,
K. B.
,
Nagatomi
,
J.
,
Langan
,
E. M.
, 3rd
, and
Laberge
,
M.
,
2010
, “
Increased Synthetic Phenotype Behavior of Smooth Muscle Cells in Response to In Vitro Balloon Angioplasty Injury Model
,”
Ann. Vasc. Surg.
,
24
(
1
), pp.
116
126
.10.1016/j.avsg.2009.07.019
4.
Albiero
,
R.
,
Silber
,
S.
,
Di Mario
,
C.
,
Cernigliaro
,
C.
,
Battaglia
,
S.
,
Reimers
,
B.
,
Frasheri
,
A.
,
Klauss
,
V.
,
Auge
,
J. M.
,
Rubartelli
,
P.
,
Morice
,
M. C.
,
Cremonesi
,
A.
,
Schofer
,
J.
,
Bortone
,
A.
, and
Colombo
,
A.
,
2004
, “
Cutting Balloon Versus Conventional Balloon Angioplasty for the Treatment of In-Stent Restenosis: Results of the Restenosis Cutting Balloon Evaluation Trial (Rescut)
,”
J. Am. Coll. Cardiol.
,
43
(
6
), pp.
943
949
.10.1016/j.jacc.2003.09.054
5.
Asakura
,
Y.
,
Furukawa
,
Y.
,
Ishikawa
,
S.
,
Asakura
,
K.
,
Sueyoshi
,
K.
,
Sakamoto
,
M.
,
Takagi
,
S.
,
Takatsuki
,
S.
,
Oyamada
,
K.
,
Okabe
,
T.
,
Mitamura
,
H.
,
Ogawa
,
S.
, and
Hinohara
,
T.
,
1998
, “
Successful Predilation of a Resistant, Heavily Calcified Lesion With Cutting Balloon for Coronary Stenting: A Case Report
,”
Cathet. Cardiovasc. Diagn.
,
44
(
4
), pp.
420
422
.10.1002/(SICI)1097-0304(199808)44:4<420::AID-CCD13>3.0.CO;2-M
6.
Kang
,
W. C.
,
Ahn
,
T. H.
,
Han
,
S. H.
, and
Shin
,
E. K.
,
2004
, “
Successful Management of a Resistant, Focal Calcified Lesion Following Direct Coronary Stenting With a Cutting Balloon
,”
J. Invasive Cardiol.
,
16
(
12
), pp.
725
726
.
7.
Dahm
,
J. B.
,
Dorr
,
M.
,
Scholz
,
E.
,
Ruppert
,
J.
,
Hummel
,
A.
,
Staudt
,
A.
, and
Felix
,
S. B.
,
2008
, “
Cutting-Balloon Angioplasty Effectively Facilitates the Interventional Procedure and Leads to a Low Rate of Recurrent Stenosis in Ostial Bifurcation Coronary Lesions: A Subgroup Analysis of the Nicecut Multicenter Registry
,”
Int. J. Cardiol.
,
124
(
3
), pp.
345
350
.10.1016/j.ijcard.2007.02.014
8.
Cotroneo
,
A. R.
, and
Iezzi
,
R.
,
2010
, “
The Role of “Cutting” Balloon Angioplasty for the Treatment of Short Femoral Bifurcation Steno-Obstructive Disease
,”
Cardiovasc. Intervent. Radiol.
,
33
(
5
), pp.
921
928
.10.1007/s00270-010-9802-5
9.
Gao
,
L. J.
,
Chen
,
J. L.
,
Chen
,
J.
,
Yang
,
Y. J.
,
Gao
,
R. L.
,
Li
,
J. J.
,
Qin
,
X. W.
,
Qiao
,
S. B.
,
Xu
,
B.
,
Yao
,
M.
,
Liu
,
H. B.
,
Wu
,
Y. J.
,
Yuan
,
J. Q.
,
You
,
S. J.
, and
Dai
,
J.
,
2009
, “
Long-Term Clinical Efficacy of Cutting Balloon Angioplasty Followed by Bare Metal Stent Implantation for Treating Ostial Left Anterior Descending Artery Lesions
,”
Clin. Cardiol.
,
32
(
8
), pp.
E31
E35
.10.1002/clc.20400
10.
Ozaki
,
Y.
,
Yamaguchi
,
T.
,
Suzuki
,
T.
,
Nakamura
,
M.
,
Kitayama
,
M.
,
Nishikawa
,
H.
,
Inoue
,
T.
,
Hara
,
K.
,
Usuba
,
F.
,
Sakurada
,
M.
,
Awano
,
K.
,
Matsuo
,
H.
,
Ishiwata
,
S.
,
Yasukawa
,
T.
,
Ismail
,
T. F.
,
Hishida
,
H.
, and
Kato
,
O.
,
2007
, “
Impact of Cutting Balloon Angioplasty (CBA) Prior to Bare Metal Stenting on Restenosis
,”
Circ. J.
,
71
(
1
), pp.
1
8
.10.1253/circj.71.1
11.
Haridas
,
K. K.
,
Vijayakumar
,
M.
,
Viveka
,
K.
,
Rajesh
,
T.
, and
Mahesh
,
N. K.
,
2003
, “
Fracture of Cutting Balloon Microsurgical Blade Inside Coronary Artery During Angioplasty of Tough Restenotic Lesion: A Case Report
,”
Catheter Cardiovasc. Interv.
,
58
(
2
), pp.
199
201
.10.1002/ccd.10416
12.
Kawamura
,
A.
,
Asakura
,
Y.
,
Ishikawa
,
S.
,
Asakura
,
K.
,
Okabe
,
T.
,
Yamane
,
A.
,
Fujikura
,
K.
,
Suzuki
,
Y.
, and
Ogawa
,
S.
,
2002
, “
Extraction of Previously Deployed Stent by an Entrapped Cutting Balloon Due to the Blade Fracture
,”
Catheter Cardiovasc. Interv.
,
57
(
2
), pp.
239
243
.10.1002/ccd.10317
13.
Hillstead
,
R. A.
,
1995
, “
Dilation Balloon Assembly
,” U.S. Patent No. 5,476,476.
14.
Kelley
,
G.
, and
Vigil
,
D.
,
2005
, “
Elastically Ditensible Folding Member
,” U.S. Patent Application US 20050137617 A1.
15.
Murphy
,
B. P.
, and
Lawlor
,
V.
,
2006
, “
Minimally Invasive Intravascular Treatment Device
,” European Patent 1 825 824 B1.
16.
Murphy
,
B. P.
, and
Blowick
,
R.
,
2008
, “
Intravascular Treatment Device
,” European Patent 2 172 242 A1.
You do not currently have access to this content.