This article outlines the controller design for a specific active transtibial prosthesis. The controller governs the power output of a DC motor attached to a four-bar mechanism and torsional spring. Active power reinforcement is used to assist the push off at later stages of the stance phase and achieve ground clearance during the swing phase. A two level control algorithm which includes a higher level finite state controller and lower level proportional-integral-derivative (PID) controllers is applied. To implement this control algorithm, a digital signal processor (DSP) control board was used to realize the higher level control and an off-the-shelf motor controller was used to realize the lower level PID control. Sensors were selected to provide the desired feedback. A dynamic simulation was performed to obtain the proper PID parameters which were then utilized in a bench test to verify the approach.

References

References
1.
Smith
,
D.
,
2003
, “
Transtibial Amputations: Successes and Challenges
,”
inMotion
,
13
(
4
), pp.
57
63
, http://www.amputee-coalition.org/inmotion/jul_aug_03/meddir.html.
2.
Dillingham
,
T.
,
Pezzin
,
L.
, and
MacKenzie
,
E.
,
2002
, “
Limb Amputation and Limb Deficiency: Epidemiology and Recent Trends in the United States
,”
Southern Medical Journal
,
95
(
8
), pp.
875
883
.
3.
Hansen
,
A.
,
Childress
,
D.
,
Miff
,
S.
,
Gard
,
S.
, and
Mesplay
,
K.
,
2004
, “
The Human Ankle During Walking: Implications for Design of Biomimetic Ankle Prostheses
,”
J. Biomech.
,
37
, pp.
1467
1474
.10.1016/j.jbiomech.2004.01.017
4.
Perry
,
J.
, and
Burnfield
,
J.
,
2010
,
Gait Analysis: Normal and Pathological Function
,
Slack Incorporated
, Thorofare, NJ.
5.
Torburn
,
L.
,
Powers
,
C. M.
,
Guiterrez
,
R.
, and
Perry
,
J.
,
1995
, “
Energy Expenditure During Ambulation in Dysvascular and Traumatic Below-Knee Amputees: A Comparison of Five Prosthetic Feet
,”
J. Rehab. Res. Dev.
,
32
(
2
), pp.
111
119
.
6.
Au
,
S.
, and
Herr
,
H.
,
2008
, “
Powered Ankle-Foot Prosthesis: The Importance of Series and Parallel Elasticity
,”
IEEE Robotics and Automation Magazine
,
15
(
3
), pp.
51
66
.10.1109/MRA.2008.927697
7.
Au
,
S.
,
Weber
,
J.
, and
Herr
,
H.
,
2009
, “
Powered Ankle-Foot Prosthesis Improves Walking Metabolic Economy
,”
IEEE Trans. Robotics
,
25
(
1
), pp.
52
59
.10.1109/TRO.2008.2008747
8.
Au
,
S. K.
,
2007
, “
Powered Ankle-Foot Prosthesis for the Improvement of Amputee Walking Economy
,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.
9.
Eilenberg
,
M.
,
Geyer
,
H.
, and
Herr
,
H.
,
2010
, “
Control of a Powered Ankle-Foot Prosthesis Based on a Neuromuscular Model
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
18
(
2
), April, pp.
164
173
.10.1109/TNSRE.2009.2039620
10.
Hitt
,
J.
,
Sugar
,
T.
,
Hogate
,
M.
, and
Bellman
,
R.
,
2010
, “
An Active Foot-Ankle Prosthesis With Biomechanical Energy Regeneration
,”
ASME J. Med. Devices
,
4
(
1
), p.
011003
.10.1115/1.4001139
11.
Bellman
,
R.
,
Holgate
,
M.
, and
Sugar
,
T.
,
2008
, “
SPARKy 3: Design of an Active Robotic Ankle Prosthesis With Two Actuated Degrees of Freedom Using Regenerative Kinetics
,”
2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (
BioRob 2008
), Scottsdale, AZ, October 19-22, pp.
511
516
.10.1109/BIOROB.2008.4762887
12.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
,
2008
, “
Design and Control of a Powered Transfemoral Prosthesis
,”
Int. J. Robotics Res.
,
27
(
2
), pp.
263
273
.10.1177/0278364907084588
13.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
,
2009
, “
Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis
,”
IEEE/ASME Trans. Mechatronics
,
14
(
6
), pp.
667
676
.10.1109/TMECH.2009.2032688
14.
Bergelin
,
B.
, and
Voglewede
,
P.
,
2012
, “
Design of an Active Ankle-Foot Prosthesis Utilizing a Four-Bar Mechanism
,”
ASME J. Mech. Design
,
134
(
6
), p.
061004
.10.1115/1.4006436
15.
Bergelin
,
B.
,
Mattos
,
J.
,
Wells
,
J.
, and
Voglewede
,
P.
,
2010
, “
Concept Through Preliminary Bench Testing of a Powered Lower Limb Prosthetic Device
,”
ASME J. Mech. Robotics
,
2
(
4
), p.
041005
.10.1115/1.4002205
16.
Mattos
,
J.
,
Kane
,
E.
, and
Voglewede
,
P.
,
2007
, “
Active Component Lower Limb Prosthetic Device Research: Concept and Design
,”
ASME
2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Las Vegas, NV, September 4-7, ASME Paper No. DETC2007-34768, pp.
607
613
10.1115/DETC2007-34768.
17.
Winter
,
D.
,
1990
,
Biomechanics and Motor Control of Human Movement
,
Wiley-Interscience
,
New York
.
18.
Norton
,
R.
,
2003
,
Design of Machinery
,
McGraw-Hill
,
New York
.
19.
Nise
,
N.
,
2010
,
Control System Engineering
,
Wiley
,
New York
.
You do not currently have access to this content.