The versatile uses and excellent soft tissue distinction afforded by magnetic resonance imaging (MRI) has led to the development of many MR-compatible devices for MRI-guided interventions. This paper presents a fully pneumatic MR-compatible robotic platform designed for neurosurgical interventions. Actuated by nonmagnetic pneumatic piston-cylinders, the robotic platform manipulates a five degree-of-freedom active cannula designed for deep brain interventions. Long lines of tubing connect the cylinders to remotely located pressure sensors and valves, and MRI-compatible optical sensors mounted on the robot provide the robot joint positions. A robust, nonlinear, model-based controller precisely translates and rotates the robot joints, with mean steady-state errors of 0.032 mm and 0.447 deg, respectively. MRI-compatibility testing in a 3-Tesla closed-bore scanner has shown that the robot has no impact on the signal-to-noise ratio, and that geometric distortion remains within recommended calibration limits for the scanner. These results demonstrate that pneumatic actuation is a promising solution for neurosurgical interventions that either require or can benefit from submillimeter precision. Additionally, this paper provides a detailed solution to the control problems imposed by severe nonlinearities in the pneumatic system, which has not previously been discussed in the context of MR-compatible devices.

References

References
1.
Tsekos
,
N.
,
Khanicheh
,
A.
,
Christoforou
,
E.
, and
Mavroidis
,
C.
,
2007
, “
Magnetic Resonance-Compatible Robotic and Mechatronics Systems for Image-Guided Interventions and Rehabilitation: A Review Study
,”
Ann. Rev. Biomed. Eng.
,
9
, pp.
351
387
.10.1146/annurev.bioeng.9.121806.160642
2.
Su
,
H.
,
Cole
,
G. A.
, and
Fischer
,
G. S.
,
2011
, “
High-Field MRI-Compatible Needle Placement Robots for Prostate Interventions: Pneumatic and Piezoelectric Approaches
,”
Advances in Robotics and Virtual Reality
,
T.
Gulrez
and
A.
Hassanien
, eds.,
Springer-Verlag
,
Berlin
, Chap. 1.
3.
Woodrum
,
D. A.
,
Mynderse
,
L. A.
,
Gorny
,
K. R.
,
Amrami
,
K. K.
,
McNichols
,
R. J.
, and
Callstrom
,
M. R.
,
2011
, “
3.0T MR-Guided Laser Ablation of a Prostate Cancer Recurrence in the Postsurgical Prostate Bed
,”
J. Vasc. Interv. Radiol.
,
22
, pp.
929
934
.10.1016/j.jvir.2011.02.039
4.
Curry
,
D. J.
,
Gowdy
,
A.
,
McNichols
,
R. J.
, and
Wilfong
,
A. A.
,
2012
, “
MR-Guided Stereotactic Ablation of Epileptogenic Foci in Children
,”
Epilepsy Behav.
,
24
(
4
), pp.
408
414
.10.1016/j.yebeh.2012.04.135
5.
Carpentier
,
A.
,
McNichols
,
R. J.
,
Stafford
,
R. J.
,
Itcovitz
,
J.
,
Guichard
,
J. P.
,
Reizine
,
D.
,
Delalog
,
S.
,
Vicaut
,
E.
,
Payen
,
D.
,
Gowda
,
A.
, and
George
,
B.
,
2008
, “
Real-Time Magnetic Resonance-Guided Laser Thermal Therapy for Focal Metastatic Brain Tumors
,”
Neurosurgery
,
63
(
1
), pp.
21
29
.10.1227/01.NEU.0000311254.63848.72
6.
Masamune
,
K.
,
Kobayashi
,
E.
,
Masutani
,
Y.
,
Suzuki
,
M.
,
Dohi
,
T.
,
Iseki
,
H.
, and
Takakura
,
K.
,
1995
, “
Development of an MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery
,”
J. Image Guid. Surg.
,
1
, pp.
242
248
.10.1002/(SICI)1522-712X(1995)1:4<242::AID-IGS7>3.0.CO;2-A
7.
Pfleiderer
,
S. O. R.
,
Reichenbach
,
J. R.
,
Azhari
,
T.
,
Marx
,
C.
,
Malich
,
A.
,
Schneider
,
A.
,
Vagner
,
J.
,
Fischer
,
H.
, and
Kaiser
,
W. A.
,
2003
, “
A Manipulator System for 14-Gauge Large Core Breast Biopsies Inside a High-Field Whole Body MR Scanner
,”
J. Magn. Reson. Imaging
,
17
, pp.
493
498
.10.1002/jmri.10282
8.
Larson
,
B. T.
,
Erdman
,
A. G.
,
Tsekos
,
N. V.
,
Yacoub
,
E.
,
Tsekos
,
P. V.
, and
Koutlas
,
I. G.
,
2004
, “
Design of an MRI-Compatible Robotic Stereotactic Device for Minimally Invasive Interventions in the Breast
,”
ASME J. Biomech. Eng.
,
126
, pp.
458
465
.10.1115/1.1785803
9.
Sutherland
,
G.
,
Latour
,
I.
,
Greer
,
A. D.
,
Fielding
,
T.
,
Feil
,
G.
, and
Newhook
,
P.
,
2008
, “
An Image-Guided Magnetic Resonance-Compatible Surgical Robot
,”
Neurosurgery
,
62
(
2
), pp.
286
293
.10.1227/01.neu.0000315996.73269.18
10.
Pandya
,
S.
,
Motkoski
,
J. W.
,
Serrano-Almeida
,
C.
,
Greer
,
A. D.
,
Latour
,
I.
, and
Sutherland
,
G. R.
,
2009
, “
Advancing Neurosurgery With Image-Guided Robotics
,”
J. Neurosurg.
,
111
(
6
), pp.
1141
1149
.10.3171/2009.2.JNS081334
11.
Melzer
,
A.
,
Gutmann
,
B.
,
Remmele
,
T.
,
Wolf
,
R.
,
Lukoscheck
,
A.
,
Bock
,
M.
,
Bardenheuer
,
H.
, and
Fischer
,
H.
,
2008
, “
INNOMOTION for Percutaneous Image-Guided Interventions: Principles and Evaluation of this MR- and CT-Compatible Robotic System
,”
IEEE Eng. Med. Biol. Mag.
,
27
(
3
), pp.
66
73
.10.1109/EMB.2007.910274
12.
Fischer
,
G.
,
Iordachita
,
I.
,
Csoma
,
C.
,
Tokuda
,
J.
,
DiMaio
,
S.
,
Tempany
,
C.
,
Hata
,
N.
, and
Fichtinger
,
G.
,
2008
, “
MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement
,”
IEEE/ASME Trans. Mechatron.
,
13
(
3
), pp.
295
305
.10.1109/TMECH.2008.924044
13.
Yang
,
B.
,
Tan
,
U-X.
,
McMillan
,
A.
,
Gullapalli
,
R.
, and
Desai
,
J. P.
,
2011
, “
Design and Implementation of a Pneumatically-Actuated Robot for Breast Biopsy Under Continuous MRI
,” Proceedings of the IEEE International Conference on Robotics and Automation (
ICRA
), Shanghai, May 9–13, pp.
674
679
.10.1109/ICRA.2011.5980448
14.
Zemiti
,
N.
,
Bricault
,
I.
,
Fouard
,
C.
,
Sanchez
,
B.
, and
Cinquin
,
P.
,
2008
, “
LPR: A CT and MR-Compatible Puncture Robot to Enhance Accuracy and Safety of Image-Guided Interventions
,”
IEEE/ASME Trans. Mechatron.
,
13
(
3
), pp.
306
315
.10.1109/TMECH.2008.924045
15.
Muntener
,
M.
,
Patriciu
,
A.
,
Petrisor
,
D.
,
Schär
,
M.
,
Ursu
,
D.
,
Song
,
D. Y.
, and
Stoianovici
,
D.
,
2008
, “
Transperineal Prostate Intervention: Robot for Fully Automated MR Imaging—System Description and Proof of Principle in a Canine Model
,”
Radiology
,
247
(
2
), pp.
543
549
.10.1148/radiol.2472070737
16.
van den Bosch
,
M. R.
,
Moman
,
M. R.
,
van Vulpen
,
M.
,
Battermann
,
J. J.
,
Duiveman
,
E.
,
van Schelven
,
L. J.
,
de Leeuw
,
H.
,
Lagendjik
,
J. J. W.
, and
Moerland
,
M. A.
,
2010
, “
MRI-Guided Robotic System for Transperineal Prostate Interventions: Proof of Principle
,”
Phys. Med. Biol.
,
55
, pp.
133
140
.10.1088/0031-9155/55/5/N02
17.
Macura
,
K. J.
, and
Stoianovici
,
D.
,
2008
, “
Advancements in Magnetic Resonance-Guided Robotic Interventions in the Prostate
,”
Top Magn. Reson. Imaging
,
19
(
6
), pp.
297
304
.10.1097/RMR.0b013e3181aa68b8
18.
Bone
,
G. M.
, and
Ning
,
S.
,
2007
, “
Experimental Comparison of Position Tracking Control Algorithms for Pneumatic Cylinder Actuators
,”
IEEE/ASME Trans. Mechatron.
,
12
(
5
), pp.
557
561
.10.1109/TMECH.2007.905718
19.
Chillari
,
S.
,
Guccione
,
S.
, and
Muscato
,
G.
,
2001
, “
An Experimental Comparison Between Several Pneumatic Position Control Methods
,” Proceedings of the 40th IEEE Conference on Decision and Control (
CDC
),
Orlando
,
FL
, December 4–7, pp.
1168
1173
.10.1109/.2001.981043
20.
Richer
,
E.
, and
Hurmuzlu
,
Y.
,
2000
, “
A High Performance Pneumatic Force Actuator System: Part 1—Nonlinear Mathematical Model
,”
ASME J. Dyn. Syst., Meas. Control
,
122
(
3
), pp.
416
425
.10.1115/1.1286336
21.
Zhu
,
Y.
, and
Barth
,
E. J.
,
2010
, “
Accurate Sub-Millimeter Servo-Pneumatic Tracking Using Model Reference Adaptive Control (MRAC)
,”
Int. J. Fluid Power
,
11
(
2
), pp.
49
57
.
22.
Comber
,
D. B.
,
Cardona
,
D.
,
Webster
,
R. J.
, III
, and
Barth
,
E. J.
,
2012
, “
Sliding Mode Control of an MRI-Compatible Pneumatically Actuated Robot
,”
Bath/ASME Symposium on Fluid Power & Motion Control
,
D. N.
Johnston
and
A. R.
Plummer
, eds.,
Centre for Power Transmission & Motion Control, University of Bath
,
Bath, UK
, pp.
283
293
.
23.
Su
,
H.
,
Cardona
,
D. C.
,
Shang
,
W.
,
Camilo
,
A.
,
Cole
,
G. A.
,
Rucker
,
D. C.
,
Webster
,
R. J.
, III
, and
Fischer
,
G. S.
,
2012
, “
A MRI-Guided Concentric Tube Continuum Robot With Piezoelectric Actuation: A Feasibility Study
,” Proceedings of the IEEE International Conference on Robotics and Automation (
ICRA
), Saint Paul, MN, May 14–18, pp.
1939
1945
.10.1109/ICRA.2012.6224550
24.
Rucker
,
D. C.
,
Jones
,
B. A.
, and
Webster
,
R. J.
, III
,
2010
, “
A Geometrically Exact Model for Externally Loaded Concentric Tube Continuum Robots
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
769
780
.10.1109/TRO.2010.2062570
25.
Dupont
,
P. E.
,
Lock
,
J.
,
Itkowitz
,
B.
, and
Butler
,
E.
,
2010
, “
Design and Control of Concentric-Tube Robots
,”
IEEE Trans Rob.
,
26
(
2
), pp.
209
225
.10.1109/TRO.2009.2035740
26.
Lhatoo
,
S. D.
,
Solomon
,
J. K.
,
McEvoy
,
A. W.
,
Kitchen
,
N. D.
,
Shorvon
,
S. D.
, and
Sander
,
J. W.
,
2003
, “
A Prospective Study of the Requirement For and the Provision of Epilepsy Surgery in the United Kingdom
,”
Epilepsia
,
44
(
5
), pp.
673
676
.10.1046/j.1528-1157.2003.46002.x
27.
Berkovic
,
S. F.
,
McIntosh
,
A. M.
,
Kalnins
,
R. M.
,
Jackson
,
G. D.
,
Fabinyi
,
G. C. A.
,
Brazenor
,
G. A.
,
Bladin
,
P. F.
, and
Hopper
,
J. L.
,
1995
, “
Preoperative MRI Predicts Outcome of Temporal Lobectomy: An Actuarial Analysis
,”
J. Neurol.
,
45
, pp.
1358
1363
.10.1212/WNL.45.7.1358
28.
Comber
,
D.
, and
Barth
,
E. J.
,
2011
, “
Precision Position Tracking of MR-Compatible Pneumatic Piston-Cylinder Using Sliding Mode Control
,”
Proceedings of the Dynamic Systems & Control Conference and Bath/ASME Symposium on Fluid Power & Motion Control
, Arlington, VA, October 31–November 2,
ASME
Paper No. DSCC2011-5960, pp.
45
51
.10.1115/DSCC2011-5960
29.
Comber
,
D. B.
,
Cardona
,
D.
,
Webster
,
R. J.
, III
, and
Barth
,
E. J.
,
2012
, “
Precision Pneumatic Robot for MRI-Guided Neurosurgery
,”
ASME J. Med. Dev.
,
6
(1), p.
017587
.
30.
Rucker
,
D. C.
, and
Webster
,
R. J.
, III
,
2011
, “
Computing Jacobians and Compliance Matrices for Externally Loaded Continuum Robots
,” Proceedings of the 2011 IEEE International Conference on Robotics and Automation (
ICRA
), Shanghai, May 9–13, pp.
945
950
.10.1109/ICRA.2011.5980351
You do not currently have access to this content.