Spring-based actuators are important in the design of wearable robotic systems. These actuators can store and release energy, and reduce the peak power requirements. Reducing these requirements allows the system to function with smaller and lighter-weight motors. Three actuators are compared: a lead screw actuator, a robotic tendon actuator, and a JackSpring™ actuator. The robotic tendon actuator adds a spring in series to the traditional actuator. The JackSpring actuator is a lead screw with a finite stiffness. A formal set of equations for the three actuators is added to Table 1 which summarizes the torque, angular speed, and power for each one. The traditional lead screw actuator cannot store and release energy and the power into the actuator must equal the power out of the actuator. The robotic tendon actuator stores and releases energy, and if a tuned spring is chosen, the power requirements can be greatly reduced. For example, if the desired external motion matches the natural frequency of the system, the motor does not need to rotate. The JackSpring actuator is a unique actuator because the stiffness and motion are coupled. It is shown that if the spring is tuned properly, the power requirements can be greatly reduced, as well.

References

References
1.
Hollander
,
K.
, and
Sugar
,
T.
,
2004
, “
Concepts for Compliant Actuation in Wearable Robotic Systems
,”
U.S.-Korea Conference (UKC 2004)
, Research Triangle Park, NC, August 12–14.
2.
Ham
,
R.
,
Sugar
,
T.
,
Vanderborght
,
B.
,
Hollander
,
K.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs
,”
IEEE Rob. Autom. Mag.
,
16
, pp.
81
94
.10.1109/MRA.2009.933629
3.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Pittsburgh, PA, August 5–9, Vol.
1
, pp.
399
406
.10.1109/IROS.1995.525827
4.
Sugar
,
T. G.
, and
Kumar
,
V. J.
,
1998
, “
Design and Control of a Compliant Parallel Manipulator for a Mobile Platform
,”
ASME Design Engineering Technical Conferences and Computers in Engineering Conference (DETC), Atlanta, GA, September 13–16, CDROM
.
5.
Sugar
,
T. G.
,
2002
, “
A Novel Selective Compliant Actuator
,”
Mechatronics
,
12
, pp.
1157
1171
.10.1016/S0957-4158(02)00021-1
6.
Tondu
,
B.
,
Boitier
,
V.
, and
Lopez
,
P.
,
1994
, “
Naturally Compliant Robot-Arms Actuated by McKibben Artificial Muscles
,”
IEEE International Conference on Systems, Man, and Cybernetics
, San Antonio, TX, October 2–5, Vol.
3
, pp.
2635
2640
10.1109/ICSMC.1994.400269.
7.
Forrest-Barlach
,
M.
, and
Babcock
,
S.
,
1987
, “
Inverse Dynamic Position Control of a Compliant Manipulator
,”
IEEE J. Rob. Autom.
,
RA-3
, pp.
75
83
.10.1109/JRA.1987.1087072
8.
Kazerooni
,
H.
,
Houpt
,
P.
, and
Sheridan
,
T.
,
1986
, “
Robust Compliant Motion for Manipulators, Part/Uppercase II: Design Method
,”
IEEE J. Rob. Autom.
,
RA-2
, pp.
93
105
.10.1109/JRA.1986.1087047
9.
Kazerooni
,
H.
,
Sheridan
,
T.
, and
Houpt
,
P.
,
1986
, “
Robust Compliant Motion for Manipulators, Part/Uppercase I: The Fundamental Concepts of Compliant Motion
,”
IEEE J. Rob. Autom.
,
RA-2
, pp.
83
92
.10.1109/JRA.1986.1087045
10.
Paul
,
R.
, and
Shimano
,
B.
,
1976
, “
Compliance and Control
,”
Proceedings of the Joint Automatic Control Conference, San Francisco, CA, pp. 694–699
.
11.
Salisbury
,
J. K.
,
1980
, “
Active Stiffness Control of a Manipulator in Uppercase Cartesian Coordinates
,”
Proceedings of the 19th IEEE Conference on Decision and Control
, Albuquerque, NM, December 10–12.10.1109/CDC.1980.272026
12.
Morell
,
J.
, and
Salisbury
,
J. K.
,
1995
, “
Parallel Coupled Actuators for High Performance Force Control: A Micro-Macro Concept
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robotics and Systems
(
IROS'95
), Pittsburgh, PA, August 5-9, pp.
391
398
.10.1109/IROS.1995.525826
13.
Kato
,
A.
,
Ito
,
K.
, and
Ito
,
M.
,
1991
, “
Compliance Control of Circular Traveling Wave Motor
,”
Proceedings of the IEEE
Industrial Electronics, Control and Instrumentation (
IECON'91
), Kobe, Japan, October 28-November 1, Vol.
1
, pp.
538
542
.10.1109/IECON.1991.239228
14.
Calin
,
M.
,
Chaillet
,
N.
,
Bourjault
,
A.
,
Bertsch
,
A.
, and
Zissy
,
S.
,
1996
, “
Design and Control of Compliant Microrobots
,”
Proceedings of the IEEE
Conference on Emerging Technologies and Factory Automation (
EFTA'96
), Kauai, HI, November 18–21, Vol.
2
, pp.
19
21
.10.1109/ETFA.1996.573855
15.
Jonsmann
,
J.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
,
1999
, “
Compliant Electro-Thermal Microactuators
,”
Proceedings of the 12th IEEE
International Conference on Micro Electro Mechanical Systems (
MEMS'99
), Orlando, FL, January 17–21, pp.
588
593
.10.1109/MEMSYS.1999.746894
16.
Kota
,
S.
,
Hetrick
,
J.
,
Li
,
Z.
, and
Saggere
,
L.
,
1999
, “
Tailoring Unconventional Actuators Using Compliant Transmissions: Design Methods and Applications
,”
IEEE/ASME Transactions on Mechatronics
, 4(4), pp.
396
408
.10.1109/3516.809518
17.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Joseph
,
J.
, and
Chiba
,
S.
,
1997
, “
Electrostriction of Polymer Films for Microactuators
,”
Proceedings of the IEEE 10th Annual International Workshop on Micro Electro Mechanical Systems
(
MEMS'97
), Nagoya, Japan, January 26–30, pp.
238
243
.10.1109/MEMSYS.1997.581811
18.
Caldwell
,
D.
,
Medrano-Cerda
,
G.
, and
Bowler
,
C.
,
1997
, “
Investigation of Bipedal Robot Locomotion Using Pneumatic Muscle Actuators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
(
ICRA-97
), Albuquerque, NM, April 20–25, pp. 799–804.10.1109/ROBOT.1997.620132
19.
Daerden
,
F.
, and
Lefeber
,
D.
,
2000
, “
Pneumatic Artificial Muscles: Actuators for Robotics and Automation
,”
Eur. J. Mech. Environ. Eng.
,
47
, pp.
10
21
.
20.
Daerden
,
F.
,
Lefeber
,
D.
,
Verrelst
,
B.
, and
Van Ham
,
R.
,
2001
, “
Pleated Pneumatic Artificial Muscles: Compliant Robotic Actuators
,”
Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Maui, HI, October 29-November 3, pp.
1958
1963
.10.1109/IROS.2001.976360
21.
Ward
,
J. A.
,
2009
, “
Design, Control, and Data Analysis for Rehabilitation Robotics
,” Ph.D. dissertation, Mechanical and Aerospace Engineering, Arizona State University, Mesa, AZ.
You do not currently have access to this content.