Robotic testing offers potential advantages over conventional methods including coordinated control of multiple degrees of freedom (DOF) and enhanced fidelity that to date have not been fully utilized. Previous robotic efforts in spine biomechanics have largely been limited to pure displacement control methods and slow quasi-static hybrid control approaches incorporating only one motion segment unit (MSU). The ability to program and selectively direct single or multibody spinal end loads in real-time would represent a significant step forward in the application of robotic testing methods. The current paper describes the development of a custom programmable robotic testing system and application of a novel force control algorithm. A custom robotic testing system with a single 4 DOF serial manipulator was fabricated and assembled. Feedback via position encoders and a six-axis load sensor were established to develop, program, and evaluate control capabilities. A calibration correction scheme was employed to account for changes in load sensor orientation and determination of spinal loads. A real-time force control algorithm was implemented that employed a real-time trajectory path modification feature of the controller. Pilot tests applied 3 Nm pure bending moments to a human cadaveric C2–T1 specimen in flexion and extension to assess the ability to control spinal end loads, and to compare the resulting motion response to previously published data. Stable accurate position control was achieved to within ±2 times the encoder resolution for each axis. Stable control of spinal end body forces was maintained to within a maximum error of 6.3 N in flexion. Sagittal flexibility data recorded from rostral and caudally placed six-axis load sensors were in good agreement, indicating a pure moment loading condition. Individual MSU rotations were consistent with previously reported data from nonrobotic protocols. The force control algorithm required 5–10 path iterations before converging to programmed end body forces within a targeted tolerance. Commercially available components were integrated to create a fully programmable custom 4 DOF gantry robot. Individual actuator performance was assessed. A real-time force control algorithm based on trajectory path modification was developed and implemented. Within a reasonable number of programmed path iterations, good control of spinal end body forces and moments, as well as a motion response consistent with previous reported data, were obtained throughout a full physiologic flexion-extension range of motion in the human subaxial cervical spine.

References

References
1.
Boguszewski
,
D. V.
,
Shearn
,
J. T.
,
Wagner
,
C. T.
, and
Butler
,
D. L.
,
2011
, “
Investigating the Effects of Anterior Tibial Translation on Anterior Knee Force in the Porcine Model: Is the Porcine Knee ACL Dependent?
,”
J. Orthop. Res.
,
29
(
5
), pp.
641
646
.10.1002/jor.21298
2.
Burkart
,
A.
,
Debski
,
R. E.
,
Mcmahon
,
P. J.
,
Rudy
,
T.
,
Fu
,
F. H.
,
Musahl
,
V.
,
Van Scyoc
,
A.
, and
Woo
,
S. L.
,
2001
, “
Precision of ACL Tunnel Placement Using Traditional and Robotic Techniques
,”
Comput. Aided Surg.
,
6
(
5
), pp.
270
278
.10.3109/10929080109146092
3.
Burkart
,
A.
,
Mcmahon
,
P.
,
Musahl
,
V. R.
,
Woo
,
S.
,
Fu
,
F.
, and
Imhoff
,
A.
,
2001
, “
Experimental Comparison of Arthroscopic and Robot-Assisted ACL Tunnel Placement
,”
Z. Orthop. Ihre Grenzgeb
,
139
(
5
), pp.
M95
M97
.10.1055/s-2001-14974
4.
Howard
,
R. A.
,
Rosvold
,
J. M.
,
Darcy
,
S. P.
,
Corr
,
D. T.
,
Shrive
,
N. G.
,
Tapper
,
J. E.
,
Ronsky
,
J. L.
,
Beveridge
,
J. E.
,
Marchuk
,
L. L.
, and
Frank
,
C. B.
,
2007
, “
Reproduction of In Vivo Motion Using a Parallel Robot
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
743
749
.10.1115/1.2768983
5.
Ishibashi
,
Y.
,
Rudy
,
T. W.
,
Livesay
,
G. A.
,
Stone
,
J. D.
,
Fu
,
F. H.
, and
Woo
,
S. L.
,
1997
, “
The Effect of Anterior Cruciate Ligament Graft Fixation Site at the Tibia on Knee Stability: Evaluation Using a Robotic Testing System
,”
Arthroscopy
,
13
(
2
), pp.
177
182
.10.1016/S0749-8063(97)90152-3
6.
Ren
,
Y.
,
Jacobs
,
B. J.
,
Nuber
,
G. W.
,
Koh
,
J. L.
, and
Zhang
,
L. Q.
,
2010
, “
Developing a 6-DOF Robot to Investigate Multi-Axis ACL Injuries Under Valgus Loading Coupled With Tibia Internal Rotation
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
,
2010
, pp.
3942
3945
.10.1109/IEMBS.2010.5627703
7.
Rudy
,
T. W.
,
Livesay
,
G. A.
,
Woo
,
S. L.
, and
Fu
,
F. H.
,
1996
, “
A Combined Robotic/Universal Force Sensor Approach to Determine In Situ Forces of Knee Ligaments
,”
J. Biomech.
,
29
(
10
), pp.
1357
1360
.10.1016/0021-9290(96)00056-5
8.
Rudy
,
T. W.
,
Sakane
,
M.
,
Debski
,
R. E.
, and
Woo
,
S. L.
,
2000
, “
The Effect of the Point of Application of Anterior Tibial Loads on Human Knee Kinematics
,”
J. Biomech.
,
33
(
9
), pp.
1147
1152
.10.1016/S0021-9290(00)00065-8
9.
Van Ham
,
G.
,
Denis
,
K.
,
Vander Sloten
,
J.
,
Van Audekercke
,
R.
,
Van Der Perre
,
G.
,
De Schutter
,
J.
,
Aertbelien
,
E.
,
Demey
,
S.
, and
Bellemans
,
J.
,
1998
, “
Machining and Accuracy Studies for a Tibial Knee Implant Using a Force-Controlled Robot
,”
Comput. Aided Surg.
,
3
(
3
), pp.
123
133
.10.3109/10929089809149840
10.
Woo
,
S. L.
,
Debski
,
R. E.
,
Wong
,
E. K.
,
Yagi
,
M.
, and
Tarinelli
,
D.
,
1999
, “
Use of Robotic Technology for Diathrodial Joint Research
,”
J. Sci. Med. Sport
,
2
(
4
), pp.
283
297
.10.1016/S1440-2440(99)80002-4
11.
Li
,
G.
,
Rudy
,
T. W.
,
Sakane
,
M.
,
Kanamori
,
A.
,
Ma
,
C. B.
, and
Woo
,
S. L.
,
1999
, “
The Importance of Quadriceps and Hamstring Muscle Loading on Knee Kinematics and In-Situ Forces in the ACL
,”
J. Biomech.
,
32
(
4
), pp.
395
400
.10.1016/S0021-9290(98)00181-X
12.
Li
,
G.
,
Zayontz
,
S.
,
Defrate
,
L. E.
,
Most
,
E.
,
Suggs
,
J. F.
, and
Rubash
,
H. E.
,
2004
, “
Kinematics of the Knee at High Flexion Angles: An In Vitro Investigation
,”
J. Orthop. Res.
,
22
(
1
), pp.
90
95
.10.1016/S0736-0266(03)00118-9
13.
Sakane
,
M.
,
Livesay
,
G. A.
,
Fox
,
R. J.
,
Rudy
,
T. W.
,
Runco
,
T. J.
, and
Woo
,
S. L.
,
1999
, “
Relative Contribution of the ACL, MCL, and Bony Contact to the Anterior Stability of the Knee
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
7
(
2
), pp.
93
97
.10.1007/s001670050128
14.
Fujie
,
H.
,
Mabuchi
,
K.
,
Woo
,
S. L.
,
Livesay
,
G. A.
,
Arai
,
S.
, and
Tsukamoto
,
Y.
,
1993
, “
The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology
,”
ASME J. Biomech. Eng.
,
115
(
3
), pp.
211
217
.10.1115/1.2895477
15.
Fujie
,
H.
,
Livesay
,
G. A.
,
Fujita
,
M.
, and
Woo
,
S. L.
,
1996
, “
Forces and Moments in Six-DOF at the Human Knee Joint: Mathematical Description for Control
,”
J. Biomech.
,
29
(
12
), pp.
1577
1585
.
16.
Musahl
,
V.
,
Plakseychuk
,
A.
,
Vanscyoc
,
A.
,
Sasaki
,
T.
,
Debski
,
R. E.
,
McMahon
,
P. J.
, and
Fu
,
F. H.
,
2005
, “
Varying Femoral Tunnels Between the Anatomical Footprint and Isometric Positions—Effect on Kinematics of the Anterior Cruciate Ligament-Reconstructed Knee
,”
Am. J. Sports Med.
,
33
(
5
), pp.
712
718
.10.1177/0363546504271747
17.
Dickey
,
J. P.
, and
Gillespie
,
K. A.
,
2003
, “
Representation of Passive Spinal Element Contributions to In Vitro Flexion-Extension Using a Polynomial Model: Illustration Using the Porcine Lumbar Spine
,”
J. Biomech.
,
36
(
6
), pp.
883
888
.10.1016/S0021-9290(02)00479-7
18.
Thompson
,
R. E.
,
Barker
,
T. M.
, and
Pearcy
,
M. J.
,
2003
, “
Defining the Neutral Zone of Sheep Intervertebral Joints During Dynamic Motions: An In Vitro Study
,”
Clin. Biomech.
,
18
(
2
), pp.
89
98
.10.1016/S0268-0033(02)00180-8
19.
Walker
,
M. R.
, and
Dickey
,
J. P.
,
2007
, “
New Methodology for Multi-Dimensional Spinal Joint Testing With a Parallel Robot
,”
Med. Biol. Eng. Comput.
,
45
(
3
), pp.
297
304
.10.1007/s11517-006-0158-6
20.
Gardner-Morse
,
M. G.
, and
Stokes
,
I. A.
,
2004
, “
Structural Behavior of Human Lumbar Spinal Motion Segments
,”
J. Biomech.
,
37
(
2
), pp.
205
212
.10.1016/j.jbiomech.2003.10.003
21.
Gilbertson
,
L. G.
,
Doehring
,
T. C.
, and
Kang
,
J. D.
,
2000
, “
New Methods to Study Lumbar Spine Biomechanics: Delineation of In Vitro Load-Displacement Characteristics by Using a Robotic/UFS Testing System With Hybrid Control
,”
Oper. Tech. Orthop.
,
10
(
4
), pp.
246
253
.10.1016/S1048-6666(00)80024-5
22.
Goertzen
,
D. J.
,
Lane
,
C.
, and
Oxland
,
T. R.
,
2004
, “
Neutral Zone and Range of Motion in the Spine are Greater With Stepwise Loading Than With a Continuous Loading Protocol. An In Vitro Porcine Investigation
,”
J. Biomech.
,
37
(
2
), pp.
257
261
.10.1016/S0021-9290(03)00307-5
23.
Fujie
,
H.
,
Sekito
,
T.
, and
Orita
,
A.
,
2004
, “
A Novel Robotic System for Joint Biomechanical Tests: Application to the Human Knee Joint
,”
ASME J. Biomech. Eng.
,
126
(
1
), pp.
54
61
.10.1115/1.1644567
24.
Goertzen
,
D. J.
, and
Kawchuk
,
G. N.
,
2009
, “
A Novel Application of Velocity-Based Force Control for Use in Robotic Biomechanical Testing
,”
J. Biomech.
,
42
(
3
), pp.
366
369
.10.1016/j.jbiomech.2008.11.006
25.
Schulze
,
M.
,
Hartensuer
,
R.
,
Gehweiler
,
D.
,
Holscher
,
U.
,
Raschke
,
M. J.
, and
Vordemvenne
,
T.
,
2012
, “
Evaluation of a Robot-Assisted Testing System for Multisegmental Spine Specimens
,”
J. Biomech.
,
45
(
8
), pp.
1457
1462
.10.1016/j.jbiomech.2012.02.013
26.
Gorinevsky
,
D. M.
,
Formalsky
,
A. M.
, and
Schneider
,
A. Y.
,
1997
,
Force Control of Robotic Systems
,
CRC Press
,
Boca Raton, FL
.
27.
Gilbertson
,
L. G.
,
Doehring
,
T. C.
,
Livesay
,
G. A.
,
Rudy
,
T. W.
,
Kang
,
J. D.
, and
Woo
,
S. L.
,
1999
, “
Improvement of Accuracy in a High-Capacity, Six Degree-of-Freedom Load Cell: Application to Robotic Testing of Musculoskeletal Joints
,”
Ann. Biomed. Eng.
,
27
(
6
), pp.
839
843
.10.1114/1.236
28.
Diangelo
,
D. J.
, and
Foley
,
K. T.
,
2003
, “
Spinal Implants: Are We Evaluating Them Appropriately? Stp1431, An Improved Biomechanical Testing Protocol for Evaluating Multilevel Cervical Instrumentation in a Human Cadaveric Corpectomy Model
,” ASTM International, West Conshohocken, PA.
29.
Schwab
,
J. S.
,
Diangelo
,
D. J.
, and
Foley
,
K. T.
,
2006
, “
Motion Compensation Associated With Single-Level Cervical Fusion: Where Does the Lost Motion Go?
,”
Spine
,
31
(
21
), pp.
2439
2448
.10.1097/01.brs.0000239125.54761.23
30.
Kelly
,
B. P.
,
Glaser
,
J. A.
, and
Diangelo
,
D. J.
,
2008
, “
Biomechanical Comparison of a Novel C1 Posterior Locking Plate With the Harms Technique in a C1-C2 Fixation Model
,”
Spine
,
33
(
24
), pp.
E920
E925
.10.1097/BRS.0b013e318185943d
31.
Denso Robotics Corporation
,
2012
, “
Five-Six Axis Articulated Robots
,” http://www.densorobotics.com/products_5_6axis.php
33.
Northern Digital Inc.
,
2012
, “
Optotrak Certus Motion Measurement System
,” http://www.ndigital.com/lifesciences/certus.php
34.
Kubo
,
S.
,
Goel
,
V. K.
,
Yang
,
S. J.
, and
Tajima
,
N.
,
2003
, “
Biomechanical Evaluation of Cervical Double-Door Laminoplasty Using Hydroxyapatite Spacer
,”
Spine
,
28
(
3
), pp.
227
234
.
35.
Miura
,
T.
,
Panjabi
,
M. M.
, and
Cripton
,
P. A.
,
2002
, “
A Method to Simulate In Vivo Cervical Spine Kinematics Using In Vitro Compressive Preload
,”
Spine
,
27
(
1
), pp.
43
48
.10.1097/00007632-200201010-00011
You do not currently have access to this content.