The success of flexible instruments in surgery requires high motion and force fidelity and controllability of the tip. However, the friction and the limited stiffness of such instruments limit the motion and force transmission of the instrument. In a previous study, we developed a flexible multibody model of a surgical instrument inside an endoscope in order to study the effect of the friction, bending and rotational stiffness of the instrument and clearance on the motion hysteresis and the force transmission. In this paper, we present the design and evaluation of an experimental setup for the validation of the flexible multibody model and the characterization of the instruments. A modular design was conceived based on three key functionalities: the actuation from the proximal end, the displacement measurement of the distal end, and the measurement of the interaction force. The exactly constrained actuation module achieves independent translation and rotation of the proximal end. The axial displacement and the rotation of the distal end are measured contactless via a specifically designed air bearing guided cam through laser displacement sensors. The errors in the static measurement are 15 μm in translation and 0.15 deg in rotation. Six 1-DOF load cell modules using flexures measure the interaction forces and moments with an error of 0.8% and 2.5%, respectively. The achieved specifications allow for the measurement of the characteristic behavior of the instrument inside a curved rigid tube and the validation of the flexible multibody model.

References

References
1.
Gomes
,
P.
,
2011
, “
Surgical Robotics: Reviewing the Past, Analysing the Present, Imagining the Future
,”
Rob. Comput.-Integr. Manufact.
,
27
(
2
), pp.
261
266
.10.1016/j.rcim.2010.06.009
2.
Lanfranco
,
A. R.
,
Castellanos
,
A. E.
,
Desai
,
J. P.
, and
Meyers
,
W. C.
,
2004
, “
Robotic Surgery: A Current Perspective
,”
Ann. Surg.
,
239
(
1
), pp.
14
21
.10.1097/01.sla.0000103020.19595.7d
3.
Camarillo
,
D. B.
,
Krummel
,
T. M.
, and
Salisbury
,
J. K.
,
2004
, “
Robotic Technology in Surgery: Past, Present, and Future
,”
Am. J. Surg.
,
188
(
1
), pp.
2
15
.10.1016/j.amjsurg.2004.08.025
4.
Swanström
,
L. L.
,
Khajanchee
,
Y.
, and
Abbas
,
M. A.
,
2008
, “
Natural Orifice Transluminal Endoscopic Surgery: The Future of Gastrointestinal Surgery
,”
The Permanente J.
,
12
(
2
), pp.
42
47
.
5.
Chamberlain
,
R.
and
Sakpal
,
S.
,
2009
, “
A Comprehensive Review of Single-Incision Laparoscopic Surgery (SILS) and Natural Orifice Transluminal Endoscopic Surgery (NOTES) Techniques for Cholecystectomy
,”
J. Gastrointest. Surg.
,
13
(
9
), pp.
1733
1740
.10.1007/s11605-009-0902-y
6.
Olympus America Inc.
,
2013
, “
Olympus EndoTherapy
,” http://www.olympusamerica.com/presspass/press_pass_cut/msg_pressone.asp
7.
Khatait
,
J. P.
,
Krijnen
,
M.
,
Meijaard
,
J. P.
,
Aarts
,
R. G. K. M.
,
Brouwer
,
D. M.
, and
Herder
,
J. L.
,
2011
, “
Modelling and Simulation of a Flexible Endoscopic Surgical Instrument in a Tube
,”
ASME 2011 International Mechanical Engineering Congress and Exposition (IMECE2011), Denver, CO, November 11–17, Vol. 2, American Society of Mechanical Engineers (ASME)
,
New York
, ASME Paper No.
IMECE2011
-65189, pp.
557
566
.10.1115/IMECE2011-65189
8.
Khatait
,
J. P.
,
Brouwer
,
D. M.
,
Meijaard
,
J. P.
,
Aarts
,
R. G. K. M.
, and
Herder
,
J. L.
,
2012
, “
3-D Multibody Modeling of a Flexible Surgical Instrument Inside an Endoscope
,”
ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, TX, November 9–15, American Society of Mechanical Engineers (ASME)
,
New York
.
9.
Khatait
,
J. P.
,
Brouwer
,
D. M.
,
Aarts
,
R. G. K. M.
, and
Herder
,
J. L.
,
2013
, “
Modeling of a Flexible Instrument to Study Its Sliding Behavior Inside a Curved Endoscope
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031002
.10.1115/1.4007539
10.
Slocum
,
A. H.
,
1992
,
Precision Machine Design
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
11.
Schellekens
,
P.
,
Rosielle
,
N.
,
Vermeulen
,
H.
,
Vermeulen
,
M.
,
Wetzels
,
S.
, and
Pril
,
W.
,
1998
, “
Design for Precision: Current Status and Trends
,”
CIRP Ann.
,
47
(
2
), pp.
557
586
.10.1016/S0007-8506(07)63243-0
12.
Okamura
,
A. M.
,
Simone
,
C.
, and
O'Leary
,
M. D.
,
2004
, “
Force Modeling for Needle Insertion Into Soft Tissue
,”
IEEE Trans. Biomed. Eng.
,
51
, pp.
1707
1716
.10.1109/TBME.2004.831542
13.
Trejos
,
A. L.
,
Patel
,
R. V.
, and
Naish
,
M. D.
,
2010
, “
Force Sensing and Its Application in Minimally Invasive Surgery and Therapy: A Survey
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.,
224
(
7
), pp.
1435
1454
.10.1243/09544062JMES1917
14.
Soemers
,
H. M. J. R.
,
2010
,
Design Principles for Precision Mechanisms
,
T-Point
,
Enschede, The Netherlands
.
15.
Blanding
,
D. L.
,
1999
,
Exact Constraint: Machine Design Using Kinematic Principles
,
American Society of Mechanical Engineers (ASME)
,
New York
.
16.
Aarts
,
R. G. K. M.
,
Meijaard
,
J. P.
, and
Jonker
,
J. B.
,
2012
, “
Flexible Multibody Modelling for Exact Constraint Design of Compliant Mechanisms
,”
Multibody Syst. Dyn.
,
27
(
1
), pp.
119
133
.10.1007/s11044-011-9272-9
17.
MISUMI Europa GmbH
,
2010
, “
Mechanical Components for Assembly Automation
,” Schwalbach, Germany.
18.
Maxon motor ag
,
2010
, “
High Precision Drives and Systems
,” Sachseln, Switzerland.
19.
Honeywell Sensing and Control
,
2010
, “Miniature Load Cell.” Columbus, OH.
20.
Micro-Epsilon Messtechnik
,
2010
, “
Laser Sensors for Displacement and Position
,” Ortenburg, Germany.
21.
The MathWorks, Inc.
,
2010
, “
xPC Target™ User's Guide
.” Natick, MA.
22.
HUMUSOFT®
,
2010
, “
MF624, Multifunction I/O Card, User's Manual
,” Czech Republic.
23.
The MathWorks, Inc.
,
2010
, “
Signal Processing Toolbox™ User's Guide
,” Natick, MA.
24.
Khatait
,
J. P.
,
2013
, “
Motion and Force Transmission of a Flexible Instrument Inside a Curved Endoscope
,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
You do not currently have access to this content.