The currently available laparoscopic instruments are unable to manipulate and grasp the large intra-abdominal organs, such as spleen and kidney, with sufficient stability and safety. This paper describes a novel three-fingered endoscopic instrument, based on parallelogram mechanism, which can fully constrain the large organs and provide an effective grasping function. We first evaluated the efficacy of the design using a 3D model and finite element analysis. Then, a fully functional prototype was fabricated for experimental evaluations, including force propagation and pull force limitation characteristics. Finally, the instrument's capability for effective grasping was investigated on animal specimens in in vitro and in vivo examinations. The results of the force propagation analysis indicated a high amplification ratio of more than 1.2 for the actuating force when grasping large organs. The pull force experiments on a sheep heart specimen revealed a nearly linear relationship between the actuating force and the limit of the pulling force that could be attained without slippage. The resulting pinch force, however, was found to be injurious if the actuating force exceeded a limit of 8.6 N. The in vitro and in vivo examinations of the instrument indicated its capability to pass through a standard 10-mm trocar to enter the abdomen, open its fingers to a diameter of about 80 mm, and grasp and manipulate organs with different sizes, shapes, and properties. With further developments, the proposed design is expected to provide a practical and feasible solution for grasping of large organs during endoscopic operations. However, more preclinical examinations are needed to evaluate the potential risks of using rigid jaws against injury-prone soft organs.

References

References
1.
Williams
, Jr.,
L. F.
,
Chapman
,
W. C.
,
Bonau
,
R. A.
,
McGee
, Jr.,
E. C.
,
Boyd
,
R. W.
, and
Jacobs
,
J. K.
,
1993
, “
Comparison of Laparoscopic Cholecystectomy With Open Cholecystectomy in a Single Center
,”
Am. J. Surg.
,
165
(
4
), pp.
459
465
.10.1016/S0002-9610(05)80941-9
2.
Bass
,
E. B.
,
Pitt
,
H. A.
, and
Lillemoe
,
K. D.
,
1993
, “
Cost-Effectiveness of Laparoscopic Cholecystectomy Versus Open Cholecystectomy
,”
Am. J. Surg.
,
165
(
4
), pp.
466
471
.10.1016/S0002-9610(05)80942-0
3.
Fullum
,
T.
,
Ladapo
,
J.
,
Borah
,
B.
, and
Gunnarsson
,
C.
,
2010
, “
Comparison of the Clinical and Economic Outcomes Between Open and Minimally Invasive Appendectomy and Colectomy: Evidence From a Large Commercial Payer Database
,”
Surg. Endosc.
,
24
(
4
), pp.
845
853
.10.1007/s00464-009-0675-0
4.
Brokelman
,
W.
,
Lensvelt
,
M.
,
Rinkes
,
I.
,
Klinkenbijl
,
J.
, and
Reijnen
,
M.
,
2011
, “
Peritoneal Changes Due to Laparoscopic Surgery
,”
Surg. Endosc.
,
25
(
1
), pp.
1
9
.10.1007/s00464-010-1139-2
5.
Geriffiths
,
J. R.
,
2001
, “
Laparoscopic Instrument With Parallel Actuated Jaws
,” U.S. Patent No. 6,238,414.
6.
Frank
,
T. G.
, and
Cuschieri
,
A.
,
1997
, “
Prehensile Atraumatic Grasper With Intuitive Ergonomics
,”
Surg. Endosc.
,
11
(
10
), pp.
1036
1039
.10.1007/s004649900521
7.
Manasnayakorn
,
S.
,
Cuschieri
,
A.
, and
Hanna
,
G.
,
2010
, “
Hand-Assisted Laparoscopic Surgery is Associated With Enhanced Depth Perception in Novices
,”
Surg. Endosc.
,
24
(
11
), pp.
2694
2699
.10.1007/s00464-010-1027-9
8.
Maartense
,
S.
,
Bemelman
,
W. A.
,
Gerritsen van der Hoop
,
A.
,
Meijer
,
D. W.
, and
Gouma
,
D. J.
,
2004
, “
Hand-Assisted Laparoscopic Surgery (HALS): A Report of 150 Procedures
,”
Surg. Endosc.
,
18
(
3
), pp.
397
401
.10.1007/s00464-003-9030-z
9.
Barbaros
,
U.
,
Dinççağ
,
A.
,
Sümer
,
A.
,
Vecchio
,
R.
,
Rusello
,
D.
,
Randazzo
,
V.
,
Issever
,
H.
, and
Avci
,
C.
,
2010
, “
Prospective Randomized Comparison of Clinical Results Between Hand-Assisted Laparoscopic and Open Splenectomies
,”
Surg. Endosc.
,
24
(
1
), pp.
25
32
.10.1007/s00464-009-0528-x
10.
Habermalz
,
B.
,
Sauerland
,
S.
,
Decker
,
G.
,
Delaitre
,
B.
,
Gigot
,
J. F.
,
Leandros
,
E.
,
Lechner
,
K.
,
Rhodes
,
M.
,
Silecchia
,
G.
,
Szold
,
A.
,
Targarona
,
E.
,
Torelli
,
P.
, and
Neugebauer
,
E.
,
2008
, “
Laparoscopic Splenectomy: The Clinical Practice Guidelines of the European Association for Endoscopic Surgery (EAES)
,”
Surg. Endosc.
,
22
(
4
), pp.
821
848
.10.1007/s00464-007-9735-5
11.
Schadde
,
E.
,
Smith
,
D.
,
Alkoraishi
,
A.
, and
Begos
,
D.
,
2006
, “
Hand-Assisted Laparoscopic Colorectal Surgery (HALS) at a Community Hospital
,”
Surg. Endosc.
,
20
(
7
), pp.
1077
1082
.10.1007/s00464-006-2002-3
12.
Sata
,
N.
,
Shiozawa
,
M.
,
Suzuki
,
A.
,
Kurihara
,
K.
,
Ohki
,
J.
, and
Nagai
,
H.
,
2006
, “
Retroperitoneal Hand-Assisted Laparoscopic Surgery for Endoscopic Adrenalectomy
,”
Surg. Endosc.
,
20
(
5
), pp.
830
833
.10.1007/s00464-005-0450-9
13.
Lindström
,
P.
,
Häggman
,
M.
, and
Wadström
,
J.
,
2002
, “
Hand-Assisted Laparoscopic Surgery (HALS) for Live Donor Nephrectomy Is More Time- and Cost-Effective Than Standard Laparoscopic Nephrectomy
,”
Surg. Endosc.
,
16
(
3
), pp.
422
425
.10.1007/s00464-001-9120-8
14.
Ortiz
,
M.
,
1995
, “
Manipulable Hand for Laparoscopy
,” U.S. Patent No. 5,441,494.
15.
Viola
,
F. J.
,
Mastri
,
D. L.
,
Sater
,
G. A.
,
Young
,
W. P.
, and
Rende
, III,
F. M.
,
1998
, “
Apparatus and Method for Performing Surgical Tasks During Laparoscopic Procedures
,” U.S. Patent No. 5,807,376.
16.
Ohshima
,
R.
,
Takayama
,
T.
,
Omata
,
T.
,
Ohya
,
T.
,
Kojima
,
K.
,
Takase
,
K.
, and
Tanaka
,
N.
,
2008
, “
Assemblable Three Fingered Five-DOF Hand for Laparoscopic Surgery
,” IEEE International Conference on Robotics and Automation (
ICRA'08
), Pasadena, CA, May 19–23, pp.
3896
3901
10.1109/ROBOT.2008.4543809.
17.
Oshima
,
R.
,
Takayama
,
T.
,
Omata
,
T.
,
Kojima
,
K.
,
Takase
,
K.
, and
Tanaka
,
N.
,
2010
, “
Assemblable Three-Fingered Nine-Degrees-of-Freedom Hand for Laparoscopic Surgery
,”
IEEE/ASME Trans. Mechatron.
,
15
(
6
), pp.
862
870
.10.1109/TMECH.2010.2081997
18.
Takayama
,
T.
,
Omata
,
T.
,
Futami
,
T.
,
Akamatsu
,
H.
,
Ohya
,
T.
,
Kojima
,
K.
,
Takase
,
K.
, and
Tanaka
,
N.
,
2007
, “
Detachable-Fingered Hands for Manipulation of Large Internal Organs in Laparoscopic Surgery
,” Proc. of IEEE International Conference on Robotics and Automation (
ICRA'07
), Rome, April 10–14, pp.
244
249
.10.1109/ROBOT.2007.363794
19.
Osaki
,
M.
,
Takayama
,
T.
,
Omata
,
T.
,
Ohya
,
T.
,
Kojima
,
K.
,
Takase
,
K.
, and
Tanaka
,
N.
,
2009
, “
Single-Trocar Assemblable Retractor-Hand for Laparoscopic Surgery
,” Proc. of IEEE International Conference on Robotics and Automation (
ICRA'09
), Kobe, Japan, May 12–17, pp.
3490
3495
10.1109/ROBOT.2009.5152823.
20.
Monkman
,
G. J.
,
Hesse
,
S.
,
Steinmann
,
R.
, and
Schunk
,
H.
,
2007
,
Robot Grippers
,
Wiley-VCH
,
New York
.
21.
Mirbagheri
,
A.
,
Yahyazadehfar
,
M.
, and
Farahmand
,
F.
,
2010
, “
Conceptual Design of a Novel Laparoscopic Instrument for Manipulation of Large Internal Organs
,”
Proceedings of ASME 2010 5th Frontiers in Biomedical Devices Conference
, BioMed2010,
Newport Beach, CA
, September 20–21, pp. 79–80.
22.
Heijnsdijk
,
E. A. M.
,
DeVisser
,
H.
,
Dankelman
,
J.
, and
Gouma
,
D. J.
,
2004
, “
Slip and Damage Properties of Jaws of Laparoscopic Graspers
,”
Surg. Endosc. Other Interv. Tech.
,
18
(
6
), pp.
974
979
.10.1007/s00464-003-9153-2
23.
Mirbagheri
,
A.
, and
Farahmand
,
F.
,
2010
, “
Design and Analysis of an Actuated Endoscopic Grasper for Manipulation of Large Body Organs
,” Proceedings of the 32nd Annual International Conference of the Engineering in Medicine and Biology Society (
EMBC
), Buenos Aires, Argentina, August 31–September 4.10.1109/IEMBS.2010.5626436
You do not currently have access to this content.