In this work, we modified the topography of commercial titanium orthopedic screws using electrochemical anodization in a 0.4 wt% hydrofluoric acid solution to produce titanium dioxide nanotube layers. The morphology of the nanotube layers were characterized using scanning electron microscopy. The mechanical properties of the nanotube layers were investigated by screwing and unscrewing an anodized screw into several different types of human bone while the torsional force applied to the screwdriver was measured using a torque screwdriver. The range of torsional force applied to the screwdriver was between 5 and 80cN·m. Independent assessment of the mechanical properties of the same surfaces was performed on simple anodized titanium foils using a triboindenter. Results showed that the fabricated nanotube layers can resist mechanical stresses close to those found in clinical situations.

References

References
1.
Popat
,
K.
,
Eltgroth
,
M.
,
LaTempa
,
T.
,
Grimes
,
C.
, and
Desai
,
T.
,
2007
, “
Decreased Staphylococcus Epidermis Adhesion and Increased Osteoblast Functionality on Antibiotic-Loaded Titania Nanotubes
,”
Biomaterials
,
28
(
32
), pp.
4880
4888
.10.1016/j.biomaterials.2007.07.037
2.
Aninwene
,
G. C.
II
, and
Webster
,
T.
,
2008
,“
Enhanced Osteoblast Adhesion to Drug-Coated Anodized Nanotubular Titanium Surfaces
,”
Int. J. Nanomed.
,
3
(
2
), pp.
257
264
.
3.
Puckett
,
S.
,
Taylor
,
E.
,
Raimondo
,
T.
and
Webster
,
T.
,
2010
, “
The Relationship Between the Nanostructure of Titanium Surfaces and Bacterial Attachment
,”
Biomaterials
,
31
(
4
), pp.
706
713
.10.1016/j.biomaterials.2009.09.081
4.
Song
,
Y.
,
Schmidt-Stein
,
F.
,
Bauer
,
S.
, and
Schmuki
,
P.
,
2009
, “
Amphiphilic TiO2 Nanotube Arrays: An Actively Controllable Drug Delivery System
,”
J. Am. Chem. Soc.
,
131
(
12
), pp.
4230
4232
.10.1021/ja810130h
5.
Variola
,
F.
,
Brunski
,
J.
,
Orsini
,
G.
,
de Oliveira
,
P.
,
Wazen
,
R.
, and
Nanci
,
A.
,
2011
, “
Nanoscale Surface Modifications of Medically Relevant Metals: State-of-the-Art and Perspectives
,”
Nanoscale
,
3
(
2
), pp.
335
353
.10.1039/c0nr00485e
6.
Yun
,
K.
,
Yang
,
Y.
,
Lim
,
H.
,
Oh
,
G.
,
Koh
,
J.
,
Bae
,
I.
,
Kim
,
J.
,
Lee
,
K.
, and
Park
,
S.
,
2010
, “
Effect of Nanotubular-Micro-Roughened Titanium Surface on Cell Response In Vitro and Osseointegration In Vivo
,”
Mater. Sci. Eng. C
,
30
(
1
), pp.
27
33
.10.1016/j.msec.2009.08.004
7.
Brammer
,
K.
,
Oh
,
S.
,
Gallagher
,
J.
, and
Jin
,
S.
,
2008
, “
Enhanced Cellular Mobility Guided by TiO2 Nanotube Surfaces
,”
Nano Lett.
,
8
(
3
), pp.
786
793
.10.1021/nl072572o
8.
Fine
,
E.
,
Zhang
,
L.
,
Fenniri
,
H.
, and
Webster
,
T.
,
2009
, “
Enhanced Endothelial Cell Functions on Rosette Nanotube-Coated Titanium Vascular Stents
,”
Int. J. Nanomed.
,
4
, pp.
91
97
.
9.
Popat
,
K.
,
Leoni
,
L.
,
Grimes
,
C.
, and
Desai
,
T.
,
2007
, “
Influence of Engineered Titania Nanotubular Surfaces on Bone Cells
,”
Biomaterials
,
28
(
21
), pp.
3188
3197
.10.1016/j.biomaterials.2007.03.020
10.
Burns
,
K.
,
Yao
,
C.
, and
Webster
,
T.
,
2009
, “
Increased Chondrocyte Adhesion on Nanotubular Anodized Titanium
,”
J. Biomed. Mater. Res. A
,
88
(
3
), pp.
561
568
.10.1002/jbm.a.31899
11.
Vetrone
,
F.
,
Variola
,
F.
,
Tambasco de Oliveira
,
P.
,
Zalzal
,
S.
,
Yi
,
J.
,
Sam
,
J.
,
Bombonato-Prado
,
K.
,
Sarkissian
,
A.
,
Perepichka
,
D.
,
Wuest
,
J.
,
Rosei
,
F.
, and
Nanci
,
A.
,
2009
, “
Nanoscale Oxidative Patterning of Metallic Surfaces to Modulate Cell Activity and Fate
,”
Nano Lett.
,
9
(
2
), pp.
659
665
.10.1021/nl803051f
12.
Brammer
,
K.
,
Oh
,
S.
,
Cobb
,
C.
Bjursten
,
L.
Heyde
,
H.
and
Jin
,
S.
,
2009
, “
Improved Bone-Forming Functionality on Diameter-Controlled TiO2 Nanotube Surface
,”
Acta Biomater.
,
5
(
8
), pp.
3215
3223
.10.1016/j.actbio.2009.05.008
13.
Das
,
K.
,
Bose
,
S.
, and
Bandyopadhyay
,
A.
,
2008
, “
TiO2 Nanotubes on Ti: Influence of Nanoscale Morphology on Bone Cell–Materials Interaction
,”
J. Biomed. Mater. Res. A
,
90
(
1
), pp.
225
237
.10.1002/jbm.a.32088
14.
Jäger
,
M.
,
Zilkens
,
C.
,
Zanger
,
K.
, and
Krauspe
,
R.
,
2007
, “
Significance of Nano- and Microtopography for Cell-Surface Interactions in Orthopaedic Implants
,”
J. Biomed. Biotech.
,
2007
, p.
69036
.10.1155/2007/69036
15.
von Wilmowsky
,
C.
,
Bauer
,
S.
,
Lutz
,
R.
,
Meisel
,
M.
,
Neukam
,
F.
,
Toyoshima
,
T.
,
Schmuki
,
P.
,
Nkenke
,
E.
, and
Schlegel
,
K.
,
2008
, “
In Vivo Evaluation of Anodic TiO2 Nanotubes: An Experimental Study in the Pig
,”
J. Biomed. Mater. Res. B
,
89
(
1
), pp.
165
171
.10.1002/jbm.b.31201
16.
Aita
,
H.
,
Hori
,
N.
,
Takeuchi
,
M.
,
Suzuki
,
T.
,
Yamada
,
M.
,
Anpo
,
M.
, and
Ogawa
,
T.
,
2009
, “
The Effect of Ultraviolet Functionalization of Titanium on Integration With Bone
,”
Biomaterials
,
30
(
6
), pp.
1015
1025
.10.1016/j.biomaterials.2008.11.004
17.
Park
,
J.
,
Bauer
,
S.
,
von der Mark
,
K.
, and
Schmuki
,
P.
,
2007
, “
Nanosize and Vitality: TiO2 Nanotube Diameter Directs Cell Fate
,”
Nano Lett.
,
7
(
6
), pp.
1686
1691
.10.1021/nl070678d
18.
Brammer
,
K.
,
Oh
,
S.
,
Frandsen
,
C.
,
Varghese
,
S.
, and
Jin
,
S.
,
2010
, “
Nanotube Surface Triggers Increased Chondrocyte Extracellular Matrix Production
,”
Mater. Sci. Eng. C
,
30
(
4
), pp.
518
525
.10.1016/j.msec.2010.01.013
19.
Awitor
,
K.
,
Rafqah
,
S.
,
Géranton
,
G.
,
Sibaud
,
Y.
,
Larson
,
P.
,
Bokalawela
,
R.
,
Jernigen
,
J.
, and
Johnson
,
M.
,
2008
, “
Photo-Catalysis Using Titanium Dioxide Nanotube Layers
,”
J. Photochem. Photobio. A
,
199
(
2–3
), pp.
250
254
.10.1016/j.jphotochem.2008.05.023
20.
Wang
,
H.
,
Premachandran Nair
,
R.
,
Zou
,
M.
,
Larson
,
P.
,
Pollack
,
A.
,
Hobbs
,
K.
,
Johnson
,
M.
, and
Awitor
,
O.
,
2007
, “
Friction Study of a Ni Nanodot-Patterned Surface
,”
Tribol. Lett.
,
28
(
2
), pp.
183
189
.10.1007/s11249-007-9263-4
21.
Macak
,
J.
,
Tsuchiya
,
H.
,
Ghicov
,
A.
,
Yasuda
,
K.
,
Hahn
,
R.
,
Bauer
,
S.
, and
Schmuki
,
P.
,
2007
, “
TiO2 Nanotubes: Self-Organized Electrochemical Formation, Properties and Applications
,”
Curr. Op. SS Mater. Sci.
,
11
(
1–2
), pp.
3
18
.10.1016/j.cossms.2007.08.004
22.
Crawford
,
G.
,
Chawla
,
N.
,
Das
,
K.
,
Bose
,
S.
, and
Bandyopadhyay
,
A.
,
2007
, “
Microstructure and Deformation Behavior of Biocompatible TiO2 Nanotubes on Titanium Substrate
,”
Acta Biomater.
,
3
(
3
), pp.
359
367
.10.1016/j.actbio.2006.08.004
You do not currently have access to this content.