The present paper presents an integrated computer-aided engineering (CAE) approach combining digital imaging, solid modeling, robust design methodology, and finite element analysis in order to conduct a parametric investigation of the design of locked plating systems. The present study allows for understanding the contributions of different design parameters on the biomechanics and reliability of these systems. Furthermore, the present approach will lead to exploration of optimum design parameters that will result in robust system performance. Three-dimensional surface models of cortical and cancellous femoral bone were derived via digital computed tomography (CT) image processing techniques and a medical imaging analysis program. A nine orthogonal array matrix simulation (L9) was conducted using finite element methods to study the effects of the various design parameters on plate performance. The introduced technique was demonstrated and experimentally verified on a case study using a Smith & Nephew PERI- LOC distal femur locking plate and a Synthes Less Invasive Stabilization System (LISS).

References

References
1.
Strauss
,
E. J.
,
Schwarzkopf
,
R.
,
Kummer
,
F.
, and
Egol
,
K. A.
,
2008
The Current Status of Locked Plating: The Good, the Bad, and the Ugly
,”
J. Orthop. Trauma
, 22(7), pp.
479
486
.10.1097/BOT.0b013e31817996d6
2.
Gardner
,
M. J.
,
Helfet
,
D. L.
, and
Lorich
,
D. G.
,
2004
, “
Has Locked Plating Completely Replaced Conventional Plating?
,”
Am. J. Orthop.
,
33
, pp.
439
446
.10.1007/s00132-003-0627-7
3.
Sommer
,
C.
,
Gautier
,
E.
,
Muller
,
M.
,
Helfet
,
D.
, and
Wagner
,
M.
,
2003
, “
First Clinical Results of the Locking Compression Plate (LCP)
,”
Injury
,
34
, pp.
S-B43
S-B45
.
4.
Hussain
,
P. B.
, and
Mohammad
,
M.
,
2004
, “
Failure Analysis of Stainless Steel Femur Fixation Plate
,”
Med. J. Malaysia
,
59
, pp.
180
181
.
5.
Sanders
,
B. S.
,
Bullington
,
A. B.
, and
McGillivary
,
G. R.
,
2007
, “
Biomechanical Evaluation of Locked Plating in Proximal Humeral Fractures
,”
J. Shoulder Elbow Surg.
,
16
, pp.
229
234
.10.1016/j.jse.2006.03.013
6.
Gardner
,
M. J.
,
Nork
,
S. E.
,
Huber
,
P.
, and
Krieg
,
J. C.
,
2009
, “
Stiffness Modulation of Locking Plate Constructs Using Near Cortical Slotted Holes: A Preliminary Study
,”
J. Orthop. Trauma
,
23
, pp.
281
287
.10.1097/BOT.0b013e31819df775
7.
Ratcliff
,
J. R.
,
Werner
,
F. W.
, and
Green
,
J. K.
,
2007
, “
Medial Buttress Versus Lateral Locked Plating in a Cadaver Medial Tibial Fracture Model
,”
J. Orthop. Trauma
,
21
, pp.
444
448
.10.1097/BOT.0b013e318126bb73
8.
Gardner
,
M. J.
,
Brophy
,
R. H.
, and
Campbell
,
D.
,
2005
, “
The Mechanical Behavior of Locking Compression Plates Compared With Dynamic Compression Plates in a Cadaver Radius Model
,”
J. Orthop. Trauma
,
19
, pp.
597
603
.10.1097/01.bot.0000174033.30054.5f
9.
Stoffel
,
K.
,
Dieter
,
U.
, and
Stachowiak
,
G.
,
2003
, “
Biomechanical Testing of the LCP—How Can Stability in Locked Internal Fixators be Controlled?
,”
Injury
,
34
, pp.
B11
B19
.10.1016/j.injury.2003.09.021
10.
Gardner
,
M. J.
,
Griffith
,
M. H.
, and
Demetrakopoulos
,
D.
,
2006
, “
Hybrid Locked Plating of Osteoporotic Fractures of the Humerus
,”
J. Bone Joint Surg.
,
88
, pp.
1962
1967
.10.2106/JBJS.E.00893
11.
Arnone
,
J. C.
,
2011
, “
A Comprehensive Simulation-Based Methodology for the Design and Optimization of Orthopaedic Internal Fixation Implants
,” Ph.D. thesis, University of Missouri, Columbia, MO.
12.
Smith & Nephew,
2005
, “
Smith & Nephew PERI-LOC Periarticular Locked Plating System—Surgical Technique
,” http://www.smith-nephew.com/global/assets/pdf/temp/targeter_systems_overview_(copy-1).pdf
13.
Dassault Systèmes,
2010
, abaqus FEA, Dassault Systèmes, Providence, RI.
14.
ASM
International Handbook Committee
,
1990
,
Metals Handbook
,
10th ed.
, Vol. 1,
ASM International
,
Materials Park, OH
.
15.
Sumner
,
D. R.
, and
Galante
,
J. O.
,
1991
, “
Determinants of Stress Shielding
,”
Clin. Orthop. Relat. Res.
,
274
, pp.
202
212
.
16.
Cowin
,
S. C.
,
2001
,
Bone Mechanics Handbook
,
CRC
,
Boca Raton
, FL, pp.
10–9
and
35–10
.
17.
Dee
,
R.
,
1997
,
Principals of Orthopaedic Practice
,
McGraw-Hill
,
New York
, pp.
26
27
.
18.
Invibio Biomaterial Solutions, www.invibio.com
19.
Scholes
,
S. C.
, and
Unsworth
,
A.
,
2006
, “
Investigating the Potential of Implantable Grade PEEK as a Bearing Material Against Various Counterfaces
,” 20th
European Society for Biomaterials Conference
,
Nantes
,
France
.
20.
Massey
,
L. K.
,
2005
,
Effects of Sterilization Methods on Plastics and Elastomers: The Definitive User's Guide and Databook
,
2nd ed.
,
William Andrew Publishing/Plastics Design Library
,
Norwich, NY
.
21.
Dittmar
,
M
.,
2002
, “
Functional and Postural Lateral Preferences in Humans: Interrelations and Life Span Age Differences
,”
Hum. Biol.
,
74
, pp.
569
585
.10.1353/hub.2002.0040
22.
Mow
,
V. C.
, and
Huiskes
,
R.
,
2005
,
Basic Orthopaedic Biomechanics and Mechano-Biology
,
Lippincott Williams & Wilkins
,
Philadelphia
, pp.
135
139
.
23.
Black
,
J.
, and
Hastings
,
G.
,
1998
,
Handbook of Biomaterial Properties
,
Chapman & Hall
,
London
.
24.
Dammak
,
M.
,
Shirazi-Adl
,
A.
,
Schwartz
, Jr.,
M.
, and
Gustavson
,
L.
,
1997
, “
Friction Properties at the Bone-Metal Interface: Comparison of Four Different Porous Metal Surfaces
,”
J. Biomed. Mater. Res.
,
35
(
3
), pp.
329
336
.10.1002/(SICI)1097-4636(19970605)35:3<329::AID-JBM7>3.0.CO;2-J
25.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
,
1993
, “
Hip Joint Loading During Walking and Running, Measured in Two Patients
,”
J. Biomech.
,
26
, pp.
969
990
.10.1016/0021-9290(93)90058-M
26.
Phadke
,
M. S.
,
1989
, “
Quality Engineering Using Robust Design
,”
Prentice-Hall
,
Englewood, CA
.
27.
National Instruments,
2012
, Labview, National Instruments, Austin, TX.
28.
Dee
,
K. C.
,
Puleo
,
D. A.
, and
Bizois
,
R.
,
2002
,
An Introduction to Tissue-Biomaterial Interactions
,
Wiley
,
New York
.
You do not currently have access to this content.