The tissue engineered ear has been an iconic symbol of the field since 1991, when the report of an engineered ear in a mouse model was first published [1]. Since then, there have been numerous efforts to adapt the technology for clinical use. Replacement engineered ear can benefit patients with congenital and acquired ear defects. Current options for ear reconstruction utilize costal cartilage and/or rigid polymer implants. Good aesthetic results can be achieved using these methods. However, neither approach is able to duplicate the mechanical properties of a normal ear, in particular the considerable flexibility of auricular cartilage. Lack of flexibility and compliance can lead to patient discomfort and increased risk of extrusion through the skin [2].

A tissue engineered ear has an inherent advantage over conventional approaches because the structure is derived from the patient's own cartilage. In this approach,...

References

References
1.
Vacanti
,
C. A.
,
Cima
,
L. G.
,
Ratkowski
,
D.
,
Upton
,
J.
,
Vacanti
,
J. P.
,
1991
, “
Tissue Engineered Growth of New Cartilage in the Shape of a Human Ear Using Synthetic Polymers Seeded With Chondrocytes,
Mater. Res. Soc. Symp. Proc.
,
252
, pp.
367
374
.10.1557/PROC-252-367
2.
Bichara
,
D. A.
,
O'Sullivan
,
N. A.
,
Pomerantseva
,
I.
,
Zhao
,
X.
,
Sundback
,
C. A.
,
Vacanti
,
J. P.
, and
Randolph
,
M. A.
,
2012
, “
The Tissue-Engineered Auricle: Past, Present, and Future
,”
Tissue Eng. Part B Rev.
,
18
(
1
), pp.
51
61
.10.1089/ten.teb.2011.0326
3.
Zhou
,
L.
,
Pomerantseva
,
I.
,
Bassett
,
E. K.
,
Bowley
,
C. M.
,
Zhao
,
X.
,
Bichara
,
D. A.
,
Kulig
,
K. M.
,
Vacanti
,
J. P.
,
Randolph
,
M. A.
, and
Sundback
,
C. A.
,
2011
, “
Engineering Ear Constructs With a Composite Scaffold to Maintain Dimensions
,”
Tissue Eng. Part A
,
17
(
11–12
), pp.
1573
1581
.10.1089/ten.tea.2010.0627
4.
Geetha
,
M.
,
Singh
,
A. K.
,
Asokamani
,
R.
, and
Gogia
,
A. K.
,
2009
, “
Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants - A Review
,”
Prog. Mater. Sci.
,
54
(
3
), pp.
397
425
.10.1016/j.pmatsci.2008.06.004
5.
Melchels
,
F. P. W.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2010
, “
A Review on Stereolithography and Its Applications in Biomedical Engineering
,”
Biomaterials
,
31
, pp.
6121
6130
.10.1016/j.biomaterials.2010.04.050
6.
Bertol
,
L. S.
,
Junior
,
W. K.
,
da Silva
,
F. P.
, and
Aumund-Kopp
,
C.
,
2010
, “
Medical Design: Direct Metal Laser Sintering of Ti-6Al-4V
,”
Mater. Design
,
31
(
8
), pp.
3982
3988
.10.1016/j.matdes.2010.02.050
7.
Murr
,
L. E.
,
Quinones
,
S. A.
,
Gaytan
,
S. M.
,
Lopez
,
M. I.
,
Rodela
,
A.
,
Martinez
,
E. Y.
,
Hernandez
,
D. H.
,
Martinez
,
E.
,
Medina
,
F.
, and
Wicker
,
R. B.
,
2009
, “
Microstructure and Mechanical Behavior of Ti-6Al-4B Produced by Rapid-Layer Manufacturing, for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
1
),
p. 20
32
.10.1016/j.jmbbm.2008.05.004
You do not currently have access to this content.