We tested the hypothesis that a slight modification in fabrication from the Driver to the Integrity stent (Medtronic) results in nearly equivalent distributions of wall shear stress (WSS) and mean exposure time (MET), reflective of flow stagnation, and that these differences are considerably less than the Multi-Link Vision (Abbott Vascular) or BX Velocity (Cordis) bare metal stents when evaluated by computational fluid dynamics (CFD). Arteries were modeled as idealized straight rigid vessels without lesions. Two vessel diameters (2.25 and 3.0 mm) were studied for each stent and 2.75 mm diameter Integrity stents were also modeled to quantify the impact from best- and worst-case orientations of the stent struts relative to the primary blood flow direction. All stents were 18 mm in length and over-deployed by 10%. The results indicated that, regardless of diameter, the BX Velocity stents had the greatest percentage of the vessel exposed to adverse WSS followed by the Vision, Integrity, and Driver stents. In general, when strut thickness and stent:lumen ratio are similar, the orientation of struts is a determining factor for deleterious flow patterns. For a given stent, the number of struts was a larger determinant of adverse WSS and MET than strut orientation, suggesting that favorable blood flow patterns can be achieved by limiting struts to those providing adequate scaffolding. In conclusion, the Driver and Integrity stents both limit their number of linkages to those which provide adequate scaffolding while also maintaining similar strut thickness and stent:lumen ratios. The Integrity stent also imparts a slight helical velocity component. The modest difference in the fabrication approach between the Driver and Integrity stents is, therefore, not hemodynamically substantial in this idealized analysis, particularly relative to potentially adverse flow conditions introduced by the other stents modeled. This data was used in conjunction with associated regulatory filings and submitted to the FDA as part of the documents facilitating the recent approval for sale of the Resolute Integrity stent in the United States.

References

References
1.
Moses
,
J. W.
,
Leon
,
M. B.
,
Popma
,
J. J.
,
Fitzgerald
,
P. J.
,
Holmes
,
D. R.
,
O'Shaughnessy
,
C.
,
Caputo
,
R. P.
,
Kereiakes
,
D. J.
,
Williams
,
D. O.
,
Teirstein
,
P. S.
,
Jaeger
,
J. L.
, and
Kuntz
,
R. E.
,
2003
, “
Sirolimus-Eluting Stents Versus Standard Stents in Patients With Stenosis in a Native Coronary Artery
,”
N. Engl. J. Med.
,
349
(
14
), pp.
1315
1323
.10.1056/NEJMoa035071
2.
Gilbert
,
J.
,
Raboud
,
J.
, and
Zinman
,
B.
,
2004
, “
Meta-Analysis of the Effect of Diabetes on Restenosis Rates Among Patients Receiving Coronary Angioplasty Stenting
,”
Diabetes Care
,
27
(
4
), pp.
990
994
.10.2337/diacare.27.4.990
3.
Corbett
,
S. C.
,
Ajdari
,
A.
,
Coskun
,
A. U.
, and
N-Hashemi
,
H.
,
2010
, “
In Vitro and Computational Thrombosis on Artificial Surfaces With Shear Stress
,”
Artif. Organs
,
34
(
7
), pp.
561
569
.10.1111/j.1525-1594.2009.00930.x
4.
Briguori
,
C.
,
Sarais
,
C.
,
Pagnotta
,
P.
,
Liistro
,
F.
,
Montorfano
,
M.
,
Chieffo
,
A.
,
Sgura
,
F.
,
Corvaja
,
N.
,
Albiero
,
R.
,
Stankovic
,
G.
,
Toutoutzas
,
C.
,
Bonizzoni
,
E.
,
Di Mario
,
C.
, and
Colombo
,
A.
,
2002
, “
In-Stent Restenosis in Small Coronary Arteries: Impact of Strut Thickness
,”
J. Am. Coll. Cardiol.
,
40
(
3
), pp.
403
409
.10.1016/S0735-1097(02)01989-7
5.
Garasic
,
J. M.
,
Edelman
,
E. R.
,
Squire
,
J. C.
,
Seifert
,
P.
,
Williams
,
M. S.
, and
Rogers
,
C.
,
2000
, “
Stent and Artery Geometry Determine Intimal Thickening Independent of Arterial Injury
,”
Circulation
,
101
(
7
), pp.
812
818
.10.1161/01.CIR.101.7.812
6.
Kastrati
,
A.
,
Mehilli
,
J.
,
Dirschinger
,
J.
,
Dotzer
,
F.
,
Schuhlen
,
H.
,
Neumann
,
F. J.
,
Fleckenstein
,
M.
,
Pfafferott
,
C.
,
Seyfarth
,
M.
, and
Schomig
,
A.
,
2001
, “
Intracoronary Stenting and Angiographic Results: Strut Thickness Effect on Restenosis Outcome (Isar-Stereo) Trial
,”
Circulation
,
103
(
23
), pp.
2816
2821
.10.1161/01.CIR.103.23.2816
7.
Gundert
,
T. J.
,
Marsden
,
A. L.
,
Yang
,
W.
, and
LaDisa
,
J. F.
, Jr.
,
2012
, “
Optimization of Cardiovascular Stent Design Using Computational Fluid Dynamics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011002
.10.1115/1.4005542
8.
Gundert
,
T. J.
,
Marsden
,
A. L.
,
Yang
,
W.
,
Marks
,
D. S.
, and
LaDisa
,
J. F.
, Jr.
,
2012
, “
Identification of Hemodynamically Optimal Coronary Stent Designs Based on Vessel Diameter
,”
IEEE Trans. Biomed. Eng.
,
59
(
7
), pp.
1992
2002
.10.1109/TBME.2012.2196275
9.
LaDisa
,
J. F.
Jr.
,
Olson
,
L. E.
,
Guler
,
I.
,
Hettrick
,
D. A.
,
Audi
,
S. H.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
,
2004
, “
Stent Design Properties and Deployment Ratio Influence Indexes of Wall Shear Stress: A Three-Dimensional Computational Fluid Dynamics Investigation Within a Normal Artery
,”
J. Appl. Physiol.
,
97
(
1
), pp.
424
430
.10.1152/japplphysiol.01329.2003
10.
Gundert
,
T. J.
,
Shadden
,
S. C.
,
Williams
,
A. R.
,
Koo
,
B. K.
,
Feinstein
,
J. A.
, and
LaDisa
,
J. F.
, Jr.
,
2011
, “
A Rapid and Computationally Inexpensive Method to Virtually Implant Current and Next-Generation Stents Into Subject-Specific Computational Fluid Dynamics Models
,”
Ann. Biomed. Eng.
,
39
(
5
), pp.
1423–1437
.10.1007/s10439-010-0238-5
11.
Tanigawa
,
J.
,
Barlis
,
P.
, and
Di Mario
,
C.
,
2007
, “
Intravascular Optical Coherence Tomography: Optimisation of Image Acquisition and Quantitative Assessment of Stent Strut Apposition
,”
EuroIntervention
,
3
(
1
), pp.
128
136
.
12.
Muller
,
J.
,
Sahni
,
O.
,
Li
,
X.
,
Jansen
,
K. E.
,
Shephard
,
M. S.
, and
Taylor
,
C. A.
,
2005
, “
Anisotropic Adaptive Finite Element Method for Modelling Blood Flow
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
5
), pp.
295
305
.10.1080/10255840500264742
13.
Sahni
,
O.
,
Muller
,
J.
,
Jansen
,
K. E.
,
Shephard
,
M. S.
, and
Taylor
,
C. A.
,
2006
, “
Efficient Anisotropic Adaptive Discretization of the Cardiovascular System
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5634
5655
.10.1016/j.cma.2005.10.018
14.
LaDisa
,
J. F.
, Jr.
,
Hettrick
,
D. A.
,
Olson
,
L. E.
,
Guler
,
I.
,
Gross
,
E. R.
,
Kress
,
T. T.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
,
2002
, “
Stent Implantation Alters Coronary Artery Hemodynamics and Wall Shear Stress During Maximal Vasodilation
,”
J. Appl. Physiol.
,
93
(
6
), pp.
1939
1946
.10.1152/japplphysiol.00544.2002
15.
LaDisa
,
J. F.
, Jr.
,
Guler
,
I.
,
Olson
,
L. E.
,
Hettrick
,
D. A.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
,
2003
, “
Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation
,”
Ann. Biomed. Eng.
,
31
(
8
), pp.
972
980
.10.1114/1.1588654
16.
LaDisa
,
J. F.
, Jr.
,
Olson
,
L. E.
,
Guler
,
I.
,
Hettrick
,
D. A.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
,
2005
, “
Circumferential Vascular Deformation After Stent Implantation Alters Wall Shear Stress Evaluated With Time-Dependent 3D Computational Fluid Dynamics Models
,”
J. Appl. Physiol.
,
98
(
3
), pp.
947
957
.10.1152/japplphysiol.00872.2004
17.
Williams
,
A. R.
,
Koo
,
B. K.
,
Gundert
,
T. J.
,
Fitzgerald
,
P. J.
, and
LaDisa
,
J. F.
, Jr.
,
2010
, “
Local Hemodynamic Changes Caused by Main Branch Stent Implantation and Subsequent Virtual Side Branch Balloon Angioplasty in a Representative Coronary Bifurcation
,”
J. Appl. Physiol.
,
109
(
2
), pp.
532
540
.10.1152/japplphysiol.00086.2010
18.
Ellwein
,
L. M.
,
Otake
,
H.
,
Gundert
,
T. J.
,
Koo
,
B. K.
,
Shinke
,
T.
,
Honda
,
Y.
,
Shite
,
J.
, and
LaDisa
,
J. F.
, Jr.
,
2011
, “
Optical Coherence Tomography for Patient-Specific 3D Artery Reconstruction and Evaluation of Wall Shear Stress in a Left Circumflex Coronary Artery
,”
Cardiovasc. Eng. Technol.
,
2
(
3
), pp.
212
217
.10.1007/s13239-011-0047-5
19.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
29–32
), pp.
3776
3796
.10.1016/j.cma.2005.04.014
20.
Tang
,
B.
,
Cheng
,
C.
,
Draney
,
M.
,
Wilson
,
N.
,
Tsao
,
P.
,
Herfkens
,
R.
, and
Taylor
,
C.
,
2006
, “
Abdominal Aortic Hemodynamics in Young Healthy Adults at Rest and During Lower Limb Exercise: Quantification Using Image-Based Computer Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
291
(
2
), pp.
H668
H676
.10.1152/ajpheart.01301.2005
21.
Lonyai
,
A.
,
Dubin
,
A. M.
,
Feinstein
,
J. A.
,
Taylor
,
C. A.
, and
Shadden
,
S. C.
,
2010
, “
New Insights Into Pacemaker Lead-Induced Venous Occlusion: Simulation-Based Investigation of Alterations in Venous Biomechanics
,”
Cardiovasc. Eng.
,
10
(
2
), pp.
84
90
.10.1007/s10558-010-9096-x
22.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA, J. Am. Med. Assoc.
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
23.
Murphy
,
J. B.
, and
Boyle
,
F. J.
,
2010
, “
A Full-Range, Multi-Variable, CFD-Based Methodology to Identify Abnormal Near-Wall Hemodynamics in a Stented Coronary Artery
,”
Biorheology
,
47
(
2
), pp.
117
132
.10.3233/BIR-2010-0568
24.
Shinke
,
T.
,
Robinson
,
K.
,
Gilson
,
P.
,
Burke
,
M. G.
,
Cheshire
,
N. J.
, and
Caro
,
C. G.
,
2007
, “
Abstract 6059: Novel Helical Stent Design Elicits Swirling Blood Flow Pattern and Inhibits Neointima Formation in Porcine Carotid Arteries
,”
Circulation
118
(18S)
,
1054
.
25.
Duraiswamy
,
N.
,
Schoephoerster
,
R. T.
, and
Moore
,
J. E.
, Jr.
,
2009
, “
Comparison of Near-Wall Hemodynamic Parameters in Stented Artery Models
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061006
.10.1115/1.3118764
26.
Pant
,
S.
,
Bressloff
,
N. W.
,
Forrester
,
A. I.
, and
Curzen
,
N.
,
2010
, “
The Influence of Strut-Connectors in Stented Vessels: A Comparison of Pulsatile Flow Through Five Coronary Stents
,”
Ann. Biomed. Eng.
,
38
(
5
), pp.
1893
1907
.10.1007/s10439-010-9962-0
27.
Ormiston
,
J. A.
,
Webber
,
B.
, and
Webster
,
M. W.
,
2011
, “
Stent Longitudinal Integrity Bench Insights Into a Clinical Problem
,”
JACC Cardiovasc. Intervent.
,
4
(
12
), pp.
1310
1317
.10.1016/j.jcin.2011.11.002
28.
Mortier
,
P.
,
De Beule
,
M.
,
Segers
,
P.
,
Verdonck
,
P.
, and
Verhegghe
,
B.
,
2011
, “
Virtual Bench Testing of New Generation Coronary Stents
,”
EuroIntervention
,
7
(
3
), pp.
369
376
.10.4244/EIJV7I3A62
29.
Ene-Iordache
,
B.
,
Mosconi
,
L.
,
Antiga
,
L.
,
Bruno
,
S.
,
Anghileri
,
A.
,
Remuzzi
,
G.
, and
Remuzzi
,
A.
,
2003
, “
Radial Artery Remodeling in Response to Shear Stress Increase Within Arteriovenous Fistula for Hemodialysis Access
,”
Endothelium
,
10
(
2
), pp.
95
102
.10.1080/10623320303365
You do not currently have access to this content.