In the present paper, an innovative miniaturized optical force sensor is introduced for use in medical devices such as minimally invasive robotic-surgery instruments. The sensing principle of the sensor relies on light transmission in optical fibers. Although the sensor is designed for use in surgical systems, it can be used in various other applications due to its novel features. The novelty of the sensor lies in offering four features in a single miniaturized package using a simple optical-based sensing principle. These four features are the high accuracy/resolution, the magnetic resonance compatibility, the electrical passivity, and the absence of drift in the measurement of continuous static force. The proposed sensor was micromachined using microsystems technology and tested. The sensor measures 18 mm, 4 mm, and 1 mm in length, width, and thickness, respectively. The sensor was calibrated and its performance under both static and dynamic loading conditions was investigated. The experimental test results demonstrate a 0.00–2.00 N force range with an rms error of approximately 2% of the force range. Its resolution is 0.02 N. The characteristics of the sensor such as its size, its measurement range, and its sensitivity are also easily tunable.

References

References
1.
Camarillo
,
D. B.
,
Krummel
,
T. M.
, and
Salisbury
,
J. K.
,
2004
, “
Robotic Technology in Surgery: Past, Present, and Future
,”
Am. J. Surg.
,
188
, pp.
2
15
.10.1016/j.amjsurg.2004.08.025
2.
Mack
,
M. J.
,
2001
, “
Minimally Invasive and Robotic Surgery
,”
JAMA J. Am. Med. Assoc.
,
285
(
5
), pp.
568
572
.10.1001/jama.285.5.568
3.
Okamura
,
A. M.
,
2004
, “
Methods for Haptic Feedback in Teleoperated Robot-Assisted Surgery
,”
Ind. Robot
,
31
(
6
), pp.
499
508
.10.1108/01439910410566362
4.
Bozovic
,
V.
, ed.,
2008
,
Medical Robotics
, I-Tech Education and Publishing,
Vienna, Austria
.
5.
King
,
C. H.
,
Culjat
,
M. O.
, and
Franco
,
M. L.
,
2009
, “
Tactile Feedback Induces Reduced Grasping Force in Robot-Assisted Surgery
,”,
IEEE Trans. Haptics
,
2
(
2
), pp.
103
110
.10.1109/TOH.2009.4
6.
King
,
C. H.
,
Franco
,
M.
, and
Culjat
,
M. O.
,
2008
, “
Fabrication and Characterization of a Balloon Actuator Array for Haptic Feedback in Robotic Surgery
,”
J. Med. Devices
,
2
,
041006
.10.1115/1.2996593
7.
Schostek
,
S.
,
Schurr
,
M. O.
, and
Buess
,
G. F.
,
2009
, “
Review on Aspects of Artificial Tactile Feedback in Laparoscopic Surgery
,”
Med. Eng. Phys.
,
31
(
8
), pp.
887
898
.10.1016/j.medengphy.2009.06.003
8.
Wagner
,
C. R.
,
Howe
,
R. D.
, and
Stylopoulos
,
N.
,
2002
, “
The Role of Force Feedback in Surgery: Analysis of Blunt Dissection
,”
Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, Orlando, FL, March 24–25,
IEEE
Computer Society
,
Washington, DC
.10.1109/HAPTIC.2002.998943
9.
Wagner
,
C. R.
,
Stylopoulos
,
N.
, and
Jackson
,
P. G.
,
2007
, “
The Benefit of Force Feedback in Surgery: Examination of Blunt Dissection
,”
Presence, Teleoper. Virtual Environ.
,
16
(
3
), pp.
252
262
.10.1162/pres.16.3.252
10.
King
,
C. H.
,
Culjat
,
M. O.
, and
Franco
,
M. L.
,
2009
, “
A Multielement Tactile Feedback System for Robot-Assisted Minimally Invasive Surgery
,”
IEEE Trans. Haptics
,
2
(
1
), pp.
52
56
.10.1109/TOH.2008.19
11.
Stoll
,
J.
, and
Dupont
,
P.
,
2006
, “
Force Control for Grasping Soft Tissue
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Orlando, FL, May 15–19, pp.
4309
4311
.
12.
Sezen
,
A.
,
Rajamani
,
R.
, and
Morrow
,
D.
,
2009
, “
An Ultraminiature MEMS Pressure Sensor with High Sensitivity for Measurement of Intramuscular Pressure (IMP) in Patients With Neuromuscular Diseases
,”
ASME J. Med. Devices
,
3
,
031006
.10.1115/1.3192103
13.
Sokhanvar
,
S.
,
Packirisamy
,
M.
, and
Dargahi
,
J.
,
2009
, “
MEMS Endoscopic Tactile Sensor: Toward In-Situ and In-Vivo Tissue Softness Characterization
,”
IEEE Sensors J.
,
9
(
12
), pp.
1679
1687
.10.1109/JSEN.2009.2025586
14.
Sokhanvar
,
S.
,
Ramezanifard
,
M.
, and
Dargahi
,
J.
,
2007
, “
Graphical Rendering of Localized Lumps for MIS Applications
,”
ASME J. Med. Devices
,
1
, pp.
217
225
.10.1115/1.2779260
15.
Kalantari
,
M.
,
Ramezanifard
,
M.
, and
Dargahi
,
J.
,
2011
, “
3D Graphical Rendering of Localized Lumps and Arteries for Robotic Assisted MIS
,”
ASME J. Med. Devices
,
5
,
021002
.10.1115/1.4003736
16.
Cleary
,
K.
,
Melzer
,
A.
, and
Watson
,
V.
,
2006
, “
Interventional Robotic Systems: Applications and Technology State-of-the-Art
,”
Minimally Invasive Ther. Allied Technol.
,
15
(
2
), pp.
101
113
.10.1080/13645700600674179
17.
Chinzei
,
K.
, and
Miller
,
K.
,
2001
, “
MRI Guided Surgical Robot
,”
Proceedings of the 2001 Australian Conference on Robotics and Automation
, Sydney, Australia, November 14–15, pp.
50
55
.
18.
Chinzei
,
K.
,
Kikinis
,
R.
, and
Jolesz
,
F.
,
1999
, “
MR Compatibility of Mechatronic Devices: Design Criteria
,”
Medical Image Computing and Computer-Assisted Intervention–MICCAI’99
(Lecture Notes in Computer Science), Vol. 1679,
Springer
,
New York
, pp.
1020
1030
.
19.
Yuen
,
S.
,
Yip
,
M.
, and
Vasilyev
,
N.
,
2009
, “
Robotic Force Stabilization for Beating Heart Intracardiac Surgery
,”
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2009
(Lecture Notes in Computer Science), Vol. 5761,
Springer
,
New York
, pp.
26
33
.
20.
Heijmans
,
J.
,
Cheng
,
L.
, and
Wieringa
,
F.
,
2009
, “
Optical Fiber Sensors for Medical Applications—Practical Engineering Considerations
,”
Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering
, Antwerp, Belgium, November 23–27,
Springer
,
New York
, pp.
2330
2334
.
21.
Rebello
,
K. J.
,
2004
, “
Applications of MEMS in Surgery
,”
Proc. IEEE
,
92
, pp.
43
55
.10.1109/JPROC.2003.820536
22.
Kern
,
T. A.
,
2009
,
Engineering Haptic Devices
,
Springer
,
New York
.
23.
Puangmali
,
P.
,
Althoefer
,
K.
, and
Seneviratne
,
L. D.
,
2010
, “
Mathematical Modeling of Intensity-Modulated Bent-Tip Optical Fiber Displacement Sensors
,”
IEEE Trans. Instrum. Meas.
,
59
(
2
), pp.
283
291
.10.1109/TIM.2009.2023147
24.
Scilingo
,
E. P.
,
Bianchi
,
M.
, and
Grioli
,
G.
,
2010
, “
Rendering Softness: Integration of Kinesthetic and Cutaneous Information in a Haptic Device
,”
IEEE Trans. Haptics
,
3
(
2
), pp.
109
118
.10.1109/TOH.2010.2
25.
Puangmali
,
P.
,
Althoefer
,
K.
, and
Seneviratne
,
L. D.
,
2008
, “
State-of-the-Art in Force and Tactile Sensing for Minimally Invasive Surgery
,”
IEEE Sens. J.
,
8
(
4
), pp.
371
381
.10.1109/JSEN.2008.917481
26.
Polygerinos
,
P.
,
Zbyszewski
,
D.
, and
Schaeffter
,
T.
,
2010
, “
MRI-Compatible Fiber-Optic Force Sensors for Catheterization Procedures
,”
IEEE Sens. J.
,
10
(
10
), pp.
1598
1608
.10.1109/JSEN.2010.2043732
27.
Yokoyama
,
K.
,
Nakagawa
,
H.
, and
Shah
,
D. C.
,
2008
, “
Novel Contact Force Sensor Incorporated in Irrigated Radiofrequency Ablation Catheter Predicts Lesion Size and Incidence of Steam Pop and Thrombus
,”
Circ. Arrhythmia Electrophysiol.
,
1
(
5
), pp.
354
362
.10.1161/CIRCEP.108.803650
28.
Puangmali
,
P.
,
Dasgupta
,
P.
, and
Seneviratne
,
L. D.
,
2010
, “
Miniaturized Triaxial Optical Fiber Force Sensor for MRI-Guided Minimally Invasive Surgery
,”
Proceedings of the IEEE Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
2592
2597
.10.1109/ROBOT.2010.5509807
29.
Polygerinos
,
P.
,
Puangmali
,
P.
, and
Schaeffter
,
T.
,
2010
, “
Novel Miniature MRI-Compatible Fiber-Optic Force Sensor for Cardiac Catheterization Procedures
,”
Proceedings of the IEEE Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
2598
2603
.10.1109/ROBOT.2010.5509416
30.
Valdastri
,
P.
,
Houston
,
K.
, and
Menciassi
,
A.
,
2007
, “
Miniaturized Cutting Tool With Triaxial Force Sensing Capabilities for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
1
, pp.
206
211
.10.1115/1.2778700
31.
Peirs
,
J.
,
Clijnen
,
J.
, and
Reynaerts
,
D.
,
2004
, “
A Micro Optical Force Sensor for Force Feedback During Minimally Invasive Robotic Surgery
,”
Sens. Actuators, A
,
115
(
2–3
), pp.
447
455
.10.1016/j.sna.2004.04.057
32.
Yip
,
M. C.
,
Yuen
,
S. G.
, and
Howe
,
R. D.
,
2010
, “
A Robust Uniaxial Force Sensor for Minimally Invasive Surgery
,”
IEEE Trans. Biomed. Eng.
,
57
(
5
), pp.
1008
1011
.10.1109/TBME.2009.2039570
33.
Ahmadi
,
R.
,
Dargahi
,
J.
, and
Packirisamy
,
M.
,
2010
, “
A New MRI-Compatible Optical Fiber Tactile Sensor for Use in Minimally Invasive Robotic Surgery Systems
,”
Proc. SPIE
,
7653
,
2Z-1
2Z-4
.10.1117/12.866196
34.
Ahmadi
,
R.
,
Packirisamy
,
M.
, and
Dargahi
,
J.
,
2011
, “
Discretely-Loaded Beam-Type Optical Fiber Tactile Sensor for Tissue Manipulation and Palpation in Minimally Invasive Robotic Surgery
,”
IEEE Sens. J.
,
12
, pp.
22
32
.10.1109/JSEN.2011.2113394
35.
Nemoto
,
S.
, and
Makimoto
,
T.
,
1979
, “
Analysis of Splice Loss in Single-Mode Fibres Using a Gaussian Field Approximation
,”
Opt. Quantum Electron.
,
11
(
5
), pp.
447
457
.10.1007/BF00619826
36.
Li
,
J.
,
Zhang
,
Q.
, and
Liu
,
A.
,
2003
, “
Advanced Fiber Optical Switches Using Deep RIE (DRIE) Fabrication
,”
Sens. Actuators, A
,
102
(
3
), pp.
286
295
.10.1016/S0924-4247(02)00401-6
37.
Beer
,
F.
, and
Johnston
, Jr.,
E.
,
1981
, “
Mechanics of Materials
,”
McGraw-Hill
,
New York
.
You do not currently have access to this content.